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Abstract. The periodic orbits of the strongly chaotic cardioid billiard are studied by introducing
a binary symbolic dynamics. The corresponding partition is mapped to a topologically well
ordered symbol plane. In the symbol plane the pruning front is obtained from orbits running
either into or through the cusp. We show that all periodic orbits correspond to maxima of the
Lagrangian and give a complete list up to code length 15. The symmetry reduction is done on
the level of the symbol sequences and the periodic orbits are classified using symmetry lines.
We show that there exists an infinite number of families of periodic orbits accumulating in length
and that all other families of geometrically short periodic orbits eventually get pruned. All these
orbits are related to finite orbits starting and ending in the cusp. We obtain an analytical estimate
of the Kolmogorov–Sinai entropy and find a good agreement with the numerically calculated
value and the one obtained by averaging periodic orbits. Furthermore, the statistical properties
of periodic orbits are investigated.

1. Introduction

A key step towards an understanding of the behaviour of a dynamical system is achieved
by finding a symbolic dynamics. By means of the symbolic dynamics trajectories can
be labelled by doubly infinite symbol sequences (see, e.g. [1–6] and references therein).
Periodic orbits are represented by periodic sequences and can be systematically searched
for once the coding is known. The knowledge of a complete set of a large number of periodic
orbits up to a given geometric length is necessary for the application of Gutzwiller’s periodic
orbit theory [7], which relates the quantum mechanical density of states of the quantized
billiard system to a sum over classical periodic orbits.

For hyperbolic systems the standard approach to a symbolic description is to construct
a Markov partition using the expanding and contracting directions. For a non-uniform
hyperbolic system there does not exist a finite Markov partition. Therefore we use a
different approach based on the singularity line of the system, which yields a symbolic
description with a few symbols only. However, not all symbol sequences are realized as
orbits of the dynamical system; the grammar describing the admissible sequences is usually
infinitely complicated. To deal with this more complicated case the idea of a pruning front
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in the symbol plane was introduced in [8]. These methods have been applied to a number
of systems (see, e.g. [9–15] and references therein).

In the class of billiards inside simply connected domains of the Euclidean plane ergodic
examples typically have either families of orbits accumulating in length, singularities in the
boundary or non-isolated parabolic families. In the case of the cardioid billiard, which has
been rigorously proven to be strongly chaotic, i.e. it is ergodic, mixing, aK-system and
even a Bernoulli system [16–19], we have accumulating families and one singularity. The
relation of the two in the cardioid billiard is quite interesting and a thorough understanding
of their effects is a prerequisite for the semiclassical quantization of this system.

There are already several results for both, the classical and quantum mechanical cardioid
billiard. The cardioid is the limiting case of a family of billiards introduced by Robnik [20],
see also [21, 22] and references therein. The statistical properties of the eigenvalues of the
quantized cardioid billiard were studied in detail in [23, 24]; see also [25], where the focus
is on diffraction effects. A lot of work has been done on Robnik’s family but the classical
mechanics of the cardioid has not been analysed in depth; it is this gap we want to fill in
with this work.

The paper is organized as follows. In section 2 the cardioid billiard and the billiard map
are defined. We show that products of linearized maps always have a positive trace and that
all orbits are maxima of the Lagrangian. Subsequently a discussion of the symmetries
of the billiard map is given. In section 3 the symbolic dynamics is defined and the
corresponding partition of the Poincaré section is illustrated. The initial partition is given
by the discontinuity of the map. The pruning of code words is discussed in the symbol
plane. In section 4 the periodic orbits are classified according to their symmetry by using the
symmetry lines of the desymmetrized billiard. We give a list of the number of periodic orbits
in each symmetry class up to code length 15. Families of periodic orbits with short geometric
lengths and their relation to cusp orbits are investigated next. It is shown that most of them
eventually get pruned. However, there remains an infinite number of families accumulating
in length. In section 5 we obtain an analytical estimate for the Kolmogorov–Sinai (KS)
entropy and find good agreement with the value obtained from numerical methods. The
average length and the KS entropy are calculated using the periodic orbits. Finally, we
investigate the statistics of periodic orbits.

2. The cardioid billiard

A billiard inside a two-dimensional Euclidean domain,�, is given by the free motion
of a point particle inside� with elastic reflections at the boundary∂�, i.e. the angle of
incidence equals the angle of reflection. The cardioid billiard is the limiting case of a family
of billiards first studied by Robnik [20]. Their boundary in polar coordinates(ρ, φ) is given
by

ρ(φ) = 1+ ε cosφ φ ∈ [−π, π ]. (1)

We restrict our attention to the cardioid (see figure 1) which is obtained forε = 1, or
implicitly by

F(x, y) = (x2+ y2− x)2− (x2+ y2) = 0 (2)

where(x, y) = r(φ) = (ρ(φ) cosφ, ρ(φ) sinφ). At φ = ±π the cardioid has a singularity
located at the originr(±π) = (0, 0).

From the above definition (1) we can easily derive the curvatureκ(φ) = 3
4 cos(φ/2) , the

unit tangent vectorT = (Tx, Ty) = (− sin(3φ/2), cos(3φ/2)), and the differential of the arc
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Figure 1. The full and desymmetrized cardioid billiard.

length ds
dφ = 2 cos(φ/2). Thus, the arc lengths is related toφ by s = 4 sin(φ/2). The area

of the cardioid is|�| = 3π/2 and its circumference is|∂�| = 8.

2.1. Poincaré map

We now derive the Poincaré map from bounce to bounce in coordinatesξ = (s, p), where
p is the component of the velocity parallel toT right after the reflection. The Cartesian
components of the unit velocityv of a billiard ball starting on∂� at r(φ) is determined by
the angleβ ∈ [−π/2, π/2] measured with respect to the normalN = (−Ty, Tx) pointing
inward. The velocity in theT ,N coordinate system is denoted by(p, n) = (sinβ, cosβ),
so that we obtainv = (− cos(β − 3φ/2), sin(β − 3φ/2)). The rightmost point of∂�
corresponds to arc lengths = 0, so that the Poincaré mapP is defined on the rectangle
P = [−4, 4] × [−1, 1]. Starting atr(φ(s)) in the directionv(φ(s), β(p)), the rayr + tv
intersects∂� at r ′ = (x ′, y ′), which is given from the solution of a third degree polynomial
derived from (2). The news ′ resp.φ′ andp′ are then given by

φ′ = arctan(y ′/x ′)
p′ = sin(β ′e) = 〈T ′, v′〉 = 〈T ′, v〉 = sin(3(φ′ − φ)/2+ β). (3)

The complete mapP : ξ = (s, p) 7→ ξ ′ = (s ′, p′) is invertible and area preserving, because
s andp are canonically conjugate. For convenience we sometimes useφ instead ofs, but
without mentioning we assume it to be expressed in terms ofs.

The two curves

S± = {ξ ∈ P|s = ±4} (4)

correspond to orbits which start in the singularityφ = ±π , i.e. on the right or left boundary
of P. For the image of points fromS± underP one hasφ′ = arctan(vy/vx) because of
r = (0, 0). Thus,φ′ = ±π/2− β and using equation (3)p′ = − sin(±π/4− β/2). The
two image curves join at the origin ofP. We denote them by

0−1
± = {ξ ∈ P|p = −s/4,±s > 0} (5)

such thatP(S±) = 0−1
± . Each of the curvesS+ and S− has a fixed point(4,−1) and

(−4, 1), respectively, which corresponds tovx = −1. The physical motion starting at these
fixed points is a sliding motion along the boundary, either counterclockwise or clockwise.

Note that althoughr(−π) = r(π) = (0, 0) we take them as different points equipped
with their different tangent vectors. In a differentiable point of∂� one can start in directions
β ∈ [−π/2, π/2]. In singular points this interval can be different; in our case atr = (0, 0)
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we can go in any direction. Points starting withvy > 0 are attached toφ = π , the ones
with vy < 0 belong toφ = −π . The unique point withr = (0, 0), v = (1, 0) in phase
space can be assigned either of the two coordinates(4, 1) or (−4,−1) in P. This is only
a coordinate singularity andP correctly maps both points onto the same pointξ = (0, 0),
where the images ofS± meet. Strictly speaking the mapP is defined on a rectangle with
these two opposite corners identified.

Two other special lines inP are its upper and lower boundary

F± = {ξ ∈ P|p = ±1, s 6= ±4}. (6)

Note thatF± are half open intervals.F± defines starting points outside of the singularity
with a velocity parallel toT , i.e.β = ±π/2, p = ±1. All the points ofF± are fixed points
of the map, although physically they correspond to the above mentioned sliding motion.

Reversing the velocity on0−1 (omitting the index± refers to both lines) we define the
line

0 = {ξ ∈ P|p = s/4} (7)

which is the set of initial conditions that will immediately hit the singularity. Therefore0−1

is the mirror image of0 with respect to thes-axis. 0 is of utmost importance, because this
line turns out to be (i) the discontinuity of the map, (ii) the boundary between our primary
symbol regions and (iii) the origin of the pruning front.0 separates two regionsA andB
in P, see figure 2. We considerA andB as open sets, i.e. without the linesF±, S± and0.

Figure 2. The regionsA andB separated by0 in the Poincaŕe section together with the fix
linesF± and the singularity linesS±. The shaded regions correspond to four intersections of
the liner + tv with the boundary∂�. In the white regions there are only two intersections.

In order to understand the ‘kneading properties’ ofP we need to know the behaviour of
P near0. SinceP is discontinuous on0 there are two different limits ofP on 0. Orbits
starting in the shaded region in figure 2 will reflect off the boundary very close to the cusp
while orbits on the other side of0 just miss the cusp. We denote the corresponding limit map
in the shaded region byPs and find (± denotes the sign ofs) Ps(s, s/4) = (±4,±1− s/2).
On the other side of0 the limit map isPf (s, s/4) = (−(±4− s), (±4− s)/4). In figure 3
the kneading property is illustrated. Here the lines14 and56 map according toPf , while
85 and43 map byPs .

Since the map is discontinuous at0, the image of0 under the Poincaré map is not well
defined. Moreover, there is no unique tangent vector inS, because the boundary curve is
not differentiable in this point. Note that we can assign the coordinates ′ = ±4, but we
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Figure 3. Demonstration of the kneading property of the billiard map. The left picture shows
the regionsA andB which are mapped byP to give the picture on the right-hand side.P
‘kneads’ triangleB by sliding point 4 to the lower right corner, while in turn point 1 is taken to
the middle. The remaining points 2 and 3 stay fixed. Note that the former centre 4 becomes a
corner and vice versa for 1. In a similar wayA is deformed underP , by taking 5 to the upper
left corner, and moving 6 to the middle. The mappingP thus contracts in the direction of0,
and expands along0−1.

cannot specifyp′ for ξ ∈ 0. One might be tempted to define the image of0 according to
its limit underPf , because also the corresponding tangent vector inS± can be defined by
an appropriate one-sided differentiation. This is, however, misleading as we will see in the
discussion of finite orbits starting and ending inS.

If we consider the desymmetrized billiard, see figure 1, the corresponding billiard map
P̃ defined onP̃ = {ξ = (s, p)|s ∈ [0, 4], p ∈ [−1, 1]}, is obtained by first usingP for a
given ξ̃ ∈ P̃; if ξ ′ ∈ P̃ we haveξ̃ ′ = ξ ′, otherwiseξ̃ ′ = (−s ′,−p′).

2.2. Linearized map

For an arbitrary billiard the linearized Poincaré map fromξ1 to ξ2 can be expressed as (see,
e.g. [26])

DP21 =
(

1/n2 0
0 n2

)(
k1− 1 −l

(k1+ k2− k1k2)/ l k2− 1

)(
n1 0
0 1/n1

)
(8)

whereki = lκi/ni andκi andni denote the curvature and normal component, respectively,
and l is the geometric length between the two reflections. For a periodic orbit this reduces
to the more familiar form for the monodromy matrix (see, e.g. [27]).

We will now show that every periodic orbit has positive trace (in this statement and for
the rest of this section we excludeF ). The argument is along the lines of Wojtkowski’s
pioneering work [16], but we will use a slightly different form due to Wittek [28], who
applied it to the wedge billiard. We now prove thatDP21 always has the following checker
board structure(+ −

− +
)
. (9)

Note that the product of two checker board matrices is again a checker board matrix. Since
ni > 0 andl > 0 we need to showki > 1 and

1

k1
+ 1

k2
< 1. (10)

Because ofκi > 0 we haveki > 0 and therefore (10) implieski > 1. Evaluating the trace
with these inequalities we find that TrDP21 > 2, where equality would hold fork1 = k2 = 2.
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Following [16] we introduce a matrix norm

%

(
a b

c d

)
=
√
ad +

√
bc (11)

such that%(M1M2) > %(M1)%(M2) if Mi has the above checker board structure and
det(Mi) = 1. If inequality (10) holds we havead > 1, such that%(Mi) > 1. Therefore we
have%(M) > 1 for the monodromy matrixM of a periodic orbit and reversing the argument
we obtain TrM > 2 such that every periodic orbit is direct hyperbolic if (10) holds.

Starting from the explicit description of the Poincaré map in the previous section it seems
quite hard to obtain (10) because the solution of a cubic equation is involved. Therefore
we now look at the generating function of our map (see [29] for a review), which is just
the length between successive reflections atr(φ1) and r(φ2). Note that in order to obtain
the area preserving mapP in coordinatesξ = (s, p) we should parameterize bys1 and
s2. However, the calculations are more conveniently done withl(φ1, φ2). Denoting by
L = L(φ1, φ2) = r(φ2)− r(φ1) the vector joining the two reflection points,

l(φ1, φ2) = |L(φ1, φ2)| = 2
√

sin21(cos21+ 2 cos8 cos1+ 1) (12)

where8 = (φ1 + φ2)/2 and1 = (φ1 − φ2)/2. The unit velocity is given byv = L/l and
we obtainn1 = 〈N1, v〉, n2 = −〈N2, v〉 and thus

ki = ±l2κi/〈Ni, L〉 = 3
cos21+ 2 cos8 cos1+ 1

2 cos21+ 3 cos8 cos1+ 1± sin8 sin1
(13)

where+ and− correspond tok1 andk2, respectively. Finally

1

k1
+ 1

k2
= 2

3

2 cos21+ 3 cos8 cos1+ 1

cos21+ 2 cos8 cos1+ 1
= 1− 4

3l2
sin41 < 1 (14)

proves inequality (10). The geometric origin of this relation is the convex scattering property
[16] of the cardioid, i.e.∂2(κ−1)/∂s2 > 0. There are a some very important consequences.
• The maximum number of conjugate points along a periodic orbit is given by the

number of reflections. The reason for this is contained in the optical interpretation of (10)
already described by Wojtkowski [16]: there is enough time between successive reflections
in order for a conjugate point to occur. Since for a free motion there cannot be more than
one conjugate point, the above statement follows.
• The eigenvalues of the monodromy matrix of periodic orbits are always positive, i.e.

all periodic orbits are direct hyperbolic. Combining this with the fact that the maximal
number of conjugate points of a periodic orbit equals the number of reflections, and since
our map is a twist map (the upper left entry inDP21 is always negative), we conclude
that periodic orbits aremaxima of the LagrangianL = ∑

l(φi−1, φi) [29, 30]. Thus, the
numerical search for periodic orbits is very much simplified, because we do not have to
find saddle points ofL (see [27, 31] for related results).
•We can obtain an analytical estimate (from below) of the maximum Lyapunov exponent

and therefore also for the KS entropy by a theorem from [16], see section 5.
Note that the second statement only holds in the non-desymmetrized system. This is one

of the reasons why we think that for the cardioid it is worthwhile to study the non-reduced
system. Furthermore, notice that the convex scattering property, which is the basis for all
the above, does not hold for any other member of the family of billiards (1), which are
therefore much more difficult.



Symbolic dynamics and periodic orbits for the cardioid billiard 1997

2.3. Symmetries

The time reversal symmetry of a billiard combined with the spatial symmetry of the cardioid
gives us a number of symmetry classes of orbits. We will not pass to the desymmetrized
billiard map but instead do the symmetry reduction on the level of the symbolic dynamics.
Here we discuss the manifestation of the symmetries in the map. In the following sections
this will be translated into symbol plane.

The time reversal symmetry in phase space is expressed byT̃ : (x, y, vx, vy) →
(x, y,−vx,−vy) and the reflection symmetry is̃R : (x, y, vx, vy)→ (x,−y, vx,−vy). The
corresponding involutions of the Poincaré map areT andX, where the latter is obtained
from T̃ R̃. For T we find

T : (s, p) 7→ (s,−p). (15)

which allows for a simple expression of the inverse map asP−1 = T PT . The involution
corresponding to the spatial symmetry is

X : (s, p) 7→ (−s, p). (16)

X andT are involutions:T 2 = id, X2 = id, detT = −1, and detX = −1.
Furthermore, we haveP−n = XPnX and P−n = T P nT , and thus we define two

families of involutions

Tn = PnT T 2
n = id detTn = −1 n = ±1,±2 . . . (17)

Xn = PnX X2
n = id detXn = −1 n = ±1,±2 . . . . (18)

The fixed point sets of involutive symmetries, the so-called symmetry lines, are useful in
finding symmetric periodic orbits [32] and in their classification [33]. The symmetry lines
are defined byTn = {ξ |Tnξ = ξ} andXn = {ξ |Xnξ = ξ}. The setT0 contains all the orbits
starting at right angles on the boundary, whileX0 contains all orbits starting at the rightmost
point of the cardioid with arbitrary angle:

T0 = {ξ ∈ P|p = 0} X0 = {ξ ∈ P|s = 0}. (19)

All the symmetry lines can be obtained by iteratingT0, T1, X0 andX1, because [32]

T2n = PnT0 T2n+1 = PnT1

X2n = PnX0 X2n+1 = PnX1.
(20)

The equationsPT ξ = ξ for T1 do not have a solution in billiards without potential and
therefore alsoT2n+1 = ∅. The symmetry lineX1 = {ξ |PXξ = ξ : (−s ′, p′) = (s, p)}
corresponds to orbits that intersect thex-axis at right angles. Therefore we introduce the
suggestive notation

X>2n ≡ X2n X |2n+1 ≡ X2n+1 (21)

related to the geometric form of the corresponding periodic orbits.X |1 is obtained by using
(3) which yields the condition sin(3φ + β) = sin(β) and finally

X |+1 = {ξ |p = − cos(3φ/2), φ ∈ [0, π/2]} (22)

X |−1 = {ξ |p = cos(3φ/2), φ ∈ [−π/2, 0]} (23)

because for|φ| > π/2 we cannot cross thex-axis.
If we consider the family of billiards (1) the setS does become a symmetry line. In the

spirit of this notation we should call itX<0 . Moreover, its preimageP−1(X<0 ) = X<−2 = 0
and its imageP(X<0 ) = X<2 = 0−1 are well defined in this case. The interpretation of
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Figure 4. The symmetry lines in the Poincaré sectionP. T0 corresponds to orbits starting at
right angles on the boundary,X>0 contains all orbits starting ins = 0, andX |±1 corresponds to
orbits intersecting thex-axis at right angles.

the line of discontinuity0 as a symmetry line leads to a nice interpretation of finite orbits
starting and ending inS.

IntersectionsXn ∩ Xm, Xn ∩ Tm and Tn ∩ Tm of symmetry lines are periodic orbits.
Intersections of symmetry lines of the same typeX or T are periodic orbits with (not
necessarily primitive) period|m − n| [32]. If Xm intersectsTn we instead have the period
|2n− 2m|. This is easily seen in the following way: We havePnT ξ = ξ andPmXξ = ξ ,
hencePn−mTXξ = ξ which in turn impliesP 2(n−m)ξ = ξ . After symmetry reduction we
always find the period|m− n|.

Let us now study the intersections of symmetry lines visible in figure 4. Already the
basic linesT0 andX>0 intersect atξ = (0, 0), but the corresponding orbit is not periodic but
instead a finite orbit running along thex-axis. The pointξ = (0, 0) is also an intersection
point of 0 and0−1, i.e. the corresponding orbit starts onS, is mapped to0−1 and 0 and
back intoS (with undefinedp′). The periodic orbit with the shortest period (besides all the
parabolic fixed points onF±), running vertically up and down, is given by the intersection of
T0 andX |±1 at (±2, 0) respectivelyφ = ±π/3. There is one more intersection in figure 4:
X |1 has endpoints on0. The (well defined) preimage of this point on0 is on 0−1, so
that this triangular-shaped orbit has two reflections besides the point in the singularity. A
discussion of symmetric orbits with a higher period will be postponed until we have the
symbolic dynamics at hand.

3. Symbolic dynamics

The discussion of the Poincaré map and its discontinuities suggests a natural choice for the
initial partition of P: regionsA andB as separated by0. For a non-uniform hyperbolic
system with singularities the singularity lines are a natural candidate to define an initial
partition. For a given velocity on∂� one can easily read its symbol as illustrated in
figure 5. Transforming this description in the Poincaré section to the one in configuration
space means to consider two consecutive pointsφ1 andφ2 on the boundary. Ifφ2 > φ1

the letterB is assigned forφ1, if φ2 < φ1 we obtainA. Furthermore, we exclude the cases
φ1 = φ2, φ1 = ±π andφ2 = ±π in order to ensure that the regionsA andB correspond
to open sets inP.
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Figure 5. Examples for the determination of the symbolsA andB in position space by the
following rule: Connect the singularityS with the current pointP . Now determine if the velocity
vector is inside the sector formed byPS and the oriented tangent vector. If the velocity vector
is inside the sector thenB is assigned, otherwiseA. In the left example, the symbolB is
associated, whereas in the right example, the corresponding symbol isA.

The construction of the partition is as follows. If we superimpose0 and0−1 we obtain
four cells inP labelledA.A, A.B, B.B, andB.A which are shown in figure 6. The forward
image of these cells generates ‘past’ stripesAA., BA., AB., andBB., basically along the
direction of0−1 ordered by increasingp onX0. The operation ofP on a symbol sequence
(word) just shifts the dot to the right. The sequenceAB. for a strip means that its preimage
is in .B and moreover in that part of.B whose preimage is in.A.

The backward images of the initial cellsA.A, A.B, B.A, andB.B give stripes elongated
in the direction of0 labelled .AA, .AB, .BA and .BB, which are just the images of the
past stripes underT . The new words.AA, .AB, .BA and .BB tell us about the future of
a given strip. The intersection of these two sets of stripes generates a partition ofP into
24 cells, also displayed in figure 6; each cell is uniquely labelled by four symbols. In [34]
it is shown that the images and preimages of the singularity lines are increasing/decreasing
curves and that they intersect tranversally. Thus, the refinement of the partition gives a finer
and finer subdivision, such that we conjecture the symbolic dynamics to be unique for the
set of orbits that never hit the singularity.

3.1. Symbol plane

For any wordα.ω = . . . s−2s−1.s1s2 . . . the coordinates(δ, γ ) ∈ [0, 1]× [0, 1] in the symbol
plane (see [2, 3]) are calculated by

γ =
∞∑
i=1

si2
−i δ =

∞∑
i=1

s−i2−i (24)

whereγ is the ‘future’ coordinate andδ is the ‘past’ coordinate. In the context of numerical
interpretationsi is zero (or one) for symbolA (or B).

A quite surprising observation is that for the cardioid billiard the ordering of stripes in
the Poincaŕe section corresponds to the ordering of words(δ, γ ) in the symbol plane. Thus,
the symbolic dynamics is already well ordered [8, 35]. The dynamics in the symbol plane
is a shift on the symbol sequences, i.e. it maps according to the baker map (see, e.g. [36]).

Figure 7 shows the onset of pruning. For symbol length 8 we have 28 cells, i.e. the 16
past and 16 future stripes intersect pairwise. At symbol length 10 this is no longer true.
The future stripe.AB4, which is the first one below0 does not intersect the outermost past
stripeB5., so that there is no cell with the labelB5.AB4 (see figure 8 for a magnification of
the relevant region inP). In the magnification it is also visible that the future stripe.BA4

above0 still intersects the past stripeB5., such that the cellB5.BA4 exists.
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Figure 6. The division ofP by preimages of0 and images of0−1 into 22 cells with 2 symbols,
24 cells with 4 symbols and 26 cells with 6 symbols. On the right-hand side the corresponding
division of the symbol plane is shown. Every line has 1, 3 or 7 intersections with other lines,
respectively.

To find out systematically which cells are forbidden we plot the truncated symbolic past
and future for points from a generic trajectory in the symbol plane (see, e.g. [35]). The
result is shown in figure 9. The picture is symmetric under reflections with respect to the
diagonals. This is caused by the underlying symmetriesT , X andTX: For a wordα.ω the

symmetry operations are realized by reading backwards
←
ω.
←
α and by taking the complement

α̂.ω̂. T is realized by
←̂
ω.
←̂
α , andX is represented by

←
ω.
←
α alone. Thus,TX is represented

by α̂.ω̂. Using equations (24) one can easily calculate the action of these operations in the
symbol plane. For a given word,α.ω, with coordinates(δ, γ ) in the symbol plane we have

T α.ω = ←̂ω.←̂α T (δ, γ ) = (1− γ, 1− δ)
Xα.ω = ←ω.←α X(δ, γ ) = (γ, δ)
T Xα.ω = α̂.ω̂ T X(δ, γ ) = (1− δ, 1− γ ).

(25)
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Figure 7. The division ofP into 210 − 4 cells with 10 symbols. At this iteration level four
lines have less than 31 intersections, indicating the onset of pruning.

Figure 8. Magnification of figure 7. The upper right
stripe isB5., the stripe above0 is .BA4, and .AB4

is the one below. Since the stripesB5. and .AB4

do not intersect, the sequenceB5.AB4 is forbidden,
whereas.BA4 andB5. still intersect, such thatB5.BA4

is allowed.

Figure 9. 106 iterations of a single orbit shown in the
symbol plane truncated to word length 2× 10.

Similarly we can define the basic symmetry lines for the symbol plane.X0 is given by the
diagonalδ = γ andT0 is the other diagonalδ + γ = 1.

3.2. Pruning front

Returning to the onset of pruning at word length 10 close to0 one expects that the origin
of pruning is the singularity of the cardioid. Therefore, we now study the set of symbol
sequences of orbits that almost hit the singularity. Two possibilities arise: on one hand the
orbit may just miss the singularity, or on the other hand, it may be reflected very close
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Figure 10. Magnification of the symbol plane around the primary pruning region. Thes-pruning
front left of δ = 0.5 and thef -pruning front to the right separate allowed and forbidden code
sequences. The squares of length 2−5, 2−6 and 2−7 correspond to forbidden words of length
10, 12 and 14, respectively. From this one can construct the words in table 1. The part of
the symbol plane that is shown corresponds to the lower right corner of the Poincaré section.
The primary pruning region extends to(0, 0.375) to the left, to(0, 0.75) to the right and up to
(0.5, 0.5) to the top.

to the singularity. The limiting cases of these types of orbits generate the pruning fronts
[8, 35] between allowed and forbidden sequences, see figure 10.

We think that this pruning front fulfills the conjecture stated in [8] that the region
enclosed by the front and theδ-axis specifies the primary pruned region in the symbol
plane. There are no orbits with a symbol sequence lying in this primary pruned region and
all the other forbidden cells visible in figure 9 are related via the symmetry operations or they
are images or preimages of these regions. We cannot prove that the pruning front separates
allowed and forbidden orbits in the symbol plane, but we have found no counterexample.

The two pruning fronts are obtained from the two possible limiting mapsPf andPs
applied to0. The plan is to start withξ ∈ 0 and to use eitherPf or Ps to map across the
discontinuity. The corresponding symbols can be read from figures 2 and 3; if we start, for
example, close to line56 shown in figure 3, the current symbol isA and the application of
Pf carries us intoB. In the case ofξ ′ ∈ S+ we assignA, and forξ ′ ∈ S− we assignB.
After this crucial step all further forward images underP are well defined, similarly the
preimages ofξ ∈ 0. Therefore an infinite symbolic past and future can be assigned toξ and
the corresponding point in the symbol plane is part of thef - or s-pruning front, depending
on the initial mapping step. From the two pruning fronts in figure 10 the left withδ < 0.5
is generated usingPs and will be called thes-pruning front, and the right is obtained using
Pf , and will be called thef -pruning front. In the division ofP in figure 8 the non-existing
cell B5.AB4 corresponds to a square below thef -pruning front. The forbidden cells above
0 (which occur first for a division ofP into 212 cells) correspond to squares below the
s-pruning front.

As a result of the above construction the two pruning fronts are related. Next we must
denote byδs andδf the respective coordinates of the two pruning fronts for the sameγ . We
find thatδf = 3

2−2δs . Moreover, thef -front (and the pruned region it encloses) is invariant
underX1, i.e. invariant under the map(δ, γ ) 7→ (γ /2+ 1

2, 2δ−1). These symmetries in the
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Table 1. Pruned words in the cardioid billiard up to length 14. The words shownα.ω and

additionally
←
ω.
←
α , α̂.ω̂ and

←̂
α .
←̂
ω are forbidden. Code words which are already pruned by

shorter words are omitted. Notice that, for example, the squaresB5A.A6 and B5A.A5B of
length 12 shown in figure 10 rule out all words of the formB5A.A5 of length 11.

Word length Pruned wordsω

10 A4B.A5

11 B5A.A5 A5B.A4B

12 A5B.A3BA2 ABA3B.A6

13 AB4A.A7 BAB4A.A6 B2A3B.A7 AB2A3B.A6

A2BA3B.A5B B5A.A4BA2 B6A.A3BA2 BA4B.A4BA2

ABA4B.A4BA A6B.A3BAB A6B.A3BBA

14 A3BA2B.A7

fronts induce relations between the pruned words listed in table 1. In figure 10 the pruning
front is shown together with squares of length 2−5, 2−6 and 2−7. From this one can obtain
finite approximations of the infinite grammar of the symbolic dynamics. The pruned words
of length 10, . . . ,14 are given in table 1.

In figure 9 the density of points is much higher when close to thef -pruning front,
while it is low when close to thes-pruning front (this is similar to the three-disk billiard
[35]). The reason is that the mapping from the Poincaré section to the symbol plane is
not area preserving, for example, the small cells just above0 shown in figure 8 and the
much larger ones below0 are represented in the symbol plane by squares of the same size.
Considering a generic trajectory which fills the Poincaré section uniformly, there is only a
low probability in the symbol plane for squares whose corresponding cell in the Poincaré
section is small.

4. Periodic orbits

Primitive periodic orbits of periodn (i.e. fixed points ofPn, Pnξ = ξ ) correspond to
periodic sequences̄ω obtained from a finite wordω with n letters, where the period of
ω̄ cannot be shortened. Two wordsω andω′ belong to the same cyclic class if they can
be obtained from each other by a cyclic permutation. For a periodic symbol sequence
ω = ω1 . . . ωn, the corresponding point in the symbol plane(δ, γ ) given by equations (24)
becomes a geometric series and we obtain

γ = N(ω)

2n − 1
= 1

1− 2−n

n∑
i=1

ωi2
−i (26)

δ = N(
←
ω)

2n − 1
= 1

1− 2−n

n∑
i=1

ω−i+n+12−i (27)

whereN(ω) =∑n
i=1ωi2

n−i is the binary interpretation ofω.
The classical properties length, stability and Morse index of periodic orbits belonging

to different cyclic classes, which are related byX, T or XT , are identical. Therefore,
different cyclic classes will be combined into symmetry classes if their code words can
be transformed into each other by reflection and/or time-reversal. As symmetry classes
we defineCfull , CTX, CX, CT, andCno using the operations defined in equation (25) (see
[27, 37] for a similar classification in the case of the hyperbola billiard). Within every
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Figure 11. Examples of periodic orbits: (a) ω = AABABBAB ∈ C>⊥full , (b) ω = AAABBB ∈
C
|⊥
full (c) ω = AAABAABBBABB ∈ CTX, (d) ω = AABABB ∈ CT, (e) ω = AABAB ∈ C|>X ,

(f ) ω = AAAABAAB ∈ C�X , (g) ω = AAAAABAB ∈ C‖X and (h) ω = AAABABB ∈ Cno.

symmetry class we choose the sequences with the smallest binary interpretationN(ω) as a
representative for that class. To every symmetry class a multiplicity is associated, which
counts the number of different cyclic classes contained in it. ForCno the multiplicity is 4,
CT, CX andCTX have multiplicity 2 andCfull has multiplicity 1. See figure 11 for some
examples.

In the case of no symmetry←, ←̂ andˆ give the symmetric partners. Ifω ∈ CT or
ω ∈ CX the corresponding symmetric partners are generated by← or ←̂ respectively. For

ω ∈ CTX one obtains the symmetric partner by←̂ or ←, since in this casê
←
ω ≡ ←ω. Thus,

despite the fact that the orbit shown in figure 11(c) looksX-symmetric, application ofX
yields the corresponding time-reversed orbit.

The classesCX andCfull can be subdivided with respect to the symmetry lines (see [33]
for a similar discussion). We use the symbols>, | and⊥ as an upper index to the class
to indicate the geometric form of the orbit resulting from an intersection of the symmetry
linesX>, X | andT . For example, subclassC|>X ⊂ CX contains orbits with period 2n− 1,
that have one perpendicular intersection with thex-axis and one point withφ = 0. The
remaining subclasses ofCX areC�X andC‖X, both with orbits of periods 2n. The orbits
with full symmetry can be divided intoC>⊥full andC|⊥full with orbits of period 4n and 4n+ 2,
respectively. The symbol⊥ indicates that the corresponding orbit has two perpendicular
reflections at the boundary and its| or > part is traversed in both directions. Orbits withT
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Table 2. Number of cyclic classes, symmetry classes and the number of elements in the
corresponding symmetry classes forn = 2, . . . ,15 in the case of a complete binary symbolic
dynamics. The number,m, of pruned orbits in the cardioid billiard is indicated by−m in the
corresponding classes.

Cfull CX
Cyclic Symmetry

n classes classes C
|⊥
full C>⊥full CTX CT C

‖
X C

>|
X C

�
X Cno

2 1 1 1 — — — — — — —
3 2 1 — — — — — 1 — —
4 3 2 — 1 — — 1 — — —
5 6–2 3–1 — — — — — 3–1 — —
6 9–2 5–1 1 — — 1 2–1 — 1 —
7 18–2 8–1 — — — — — 7–1 — 1
8 30–2 14–1 — 2 — 2 6–1 — 2 2
9 56–4 21–2 — — — — — 14–2 — 7

10 99–6 39–3 3 — — 6 12–2 — 6–1 12
11 186–12 62–6 — — — — — 31–6 — 31
12 335–33 112–13 — 3–1 1 12–1 27–4 — 12–3 57–4
13 630–76 189–25 — — — — — 63–12 — 126–13
14 1161–145 352–46 7–1 — 1 28–2 56–10 — 28–4 232–29
15 2182–314 607–89 — — — — — 123–21 — 484–68

or TX or full symmetry are only possible for evenn, sincê exchanges the numbers ofA
andB. If n is odd, only orbits fromC |>X andCno exist. Elements fromCno only exist for
n > 7.

In table 2 the number of cyclic classes, symmetry classes and the corresponding number
of elements in the different symmetry classes are shown forn = 2, . . . ,15 in the case of
a complete binary symbolic dynamics. For period 1 there are two periodic sequencesA

andB, which correspond to the linesF± in our system. The shortest hyperbolic periodic
orbit has period 2 and the sequenceAB. Due to pruning not every orbit is allowed. In
table 2 the number of pruned symmetry classes are indicated by−m for the corresponding
symmetry classes. Starting at period 5 the orbitsAjB are pruned forj > 4. All other
periodic code words up to period 9 correspond to physical orbits. Starting with period 9
the orbitsAjBA3B, j > 4 are missing, and for period 10, in addition,A6BAAB. Three
examples of forbidden orbits are shown in figure 12.

Some of the forbidden orbits are obviously ruled out by the pruned symbols given in
table 1. For example, the pruned wordA4B.A5 rules out the existence of all the periodic

Figure 12. Examples of pruned periodic orbits: (a) f -pruning:A5B, (b) s-pruning:A6B6 and
(c) combined pruning:A7BA4B4. Note that in (c) the reflection in the singularity takes place
only from above.
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orbits of the formAjB, for j > 5 but not forj = 4. The existence of orbits cannot be
deduced from the pruned words (of finite length), but only the non-existence of periodic
orbits. The reason is that a periodic orbit is an infinite sequence, which might be pruned
by an extremely long word which is much longer than the period. This is well illustrated
in the case of the periodic orbitA4B, which is forbidden by the wordsABA4B.A4BA or
BA4B.A4BA2 of length 13, see figure 10 and table 1.

The orbitA5B shown in figure 12(a) is an example of anf -pruned orbit. In fact, the
corresponding point in the symbol plane is inside the pruned squareA4B.A5, see figure 10.
As an example fors-pruning in figure 12(b) the forbidden orbitA6B6 is shown, which is
pruned by the wordB5A.A5, whose square is below thes-pruning front. In addition there
are also orbits for which combinations of both pruning mechanisms occur, see figure 12(c).

Long orbits, especially thes-pruning, are the reason for some numerical difficulties in
deciding whether an orbit has a reflection next to the cusp or whether it is pruned. Some
periodic orbits close to the cusp have quite large eigenvalues, due to the fact, that the
curvature diverges near the cusp. For example, for period 11 the most unstable orbit has
eigenvalue 663 393 and the eigenvalue for the most unstable orbit of period 15 is even larger
than 1 000 000. Note that such large instabilities cannot be calculated accurately using the
monodromy matrix of the map because of rounding-off errors; therefore we use the method
described in [30].

4.1. Desymmetrized cardioid billiard

The code word in the desymmetrized system can be easily read from the code word in the
full system in the following way: if two adjacent symbols are identical, assign 0, otherwise
1. For example the code forAAAB in the desymmetrized systems is0011. Periodic orbits
of the full system with full orTX symmetry are reduced in length by a factor of 2. For
exampleAAABBB ∈ Cfull maps to001001≡ 001, orAAABAABBBABB ∈ CTX in the
desymmetrized system is given by001101001101≡ 001101.

Likewise the code word in the full system is constructed from the one in the
desymmetrized system. If the code word in the desymmetrized system has an odd number
of 1’s, the period is doubled because otherwise it would not give a periodic word. These
orbits are just the ones withCfull or CTX symmetry in the full system.

The multiplicities of orbits in the desymmetrized system can be determined from the
symmetry of the corresponding orbit in the full system: for an orbit fromCfull the multiplicity
is still 1; in the case ofCX andCT the multiplicity reduces from 2 to 1. Orbits fromCTX and
Cno are almost indistiguishable in the desymmetrized system, they both have multiplicity 2.
For the relation between the code lengthn in the full andn′ in the desymmetrized system
and the corresponding multiplicitiesm andm′ the rule nm

n′m′ = 2 holds. If n/n′ = 2 then
also the geometric length and the stability exponent (which is the natural logarithm of the
larger eigenvalue of the monodromy matrixM) are divided by 2.

The sign of the trace ofM changes with every reflection at thex-axis. The total
number of reflections at thex-axis is equal to the number of 1’s in the code word of the
desymmetrized system. To understand this fact it is helpful to interpret the symbols 0 and
1 in the reduced system.

In the reduced Poincaré sectionP̃ the symbol 0 corresponds to all pointsξ with
|p| > s/4, and 1 corresponds to all points with|p| < s/4 (again excludingS andF ).
Notice that the region corresponding to 0 is not simply connected. In configuration space
this translates to the rule illustrated in figure 13. Fors 6 4/

√
3 all orbits from the sector

1 immediately reflect at thex-axis. Fors > 4/
√

3 only part of these orbits hits thex-axis.
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Figure 13. The rule for the symbols 0 and 1 in the desymmetrized billiard in configuration
space: Connect the cusp with the current point on the boundary. Then reflect this line at the
normal vector in the current point. If the actual velocity vector is in the sector formed by these
two lines assign the symbol 1, otherwise 0.

The other part with negativep encounters a reflection with the boundary∂� which gets it
closer tos = 0. All the remaining reflections of this part get the symbol 0, i.e. they must
eventually approachs = 0 and hit thex-axis before the next symbol 1 can occur.

The fact that the number, #1(ω), of 1’s in the code word gives the number of reflections
with thex-axis is important for calculating the Morse index which enters into the Gutzwiller
trace formula. For a billiard system the Morse indexν is twice the number of reflections at
the boundary with Dirichlet boundary condition plus the maximal numberµ of conjugate
points [38]. For the desymmetrized cardioid billiard in the case of Dirichlet boundary
conditionsν = 2n + n + 2#1(ω) and in the case of Neumann boundary conditions on the
x-axis ν = 2n + n. Alternatively the additional phase due to #1(ω) can be interpreted as
coming from a group character of the underlying symmetry group. This point of view is
more appropriate when dealing with more complicated group symmetries (see e.g. [39]).

The relation between the code for the desymmetrized billiard and the symmetry classes
is obtained using the symmetry lines. Therefore, we first consider the relation between a
symbol string and the symmetry linesX>0 , X |1 andT0 in the desymmetrized system [33].
The line X |0 corresponds to all points iñP, whose symbol sequence is symmetric with
respect to the dot

X |0 ' {β.
←
β }. (28)

The lineX>1 corresponds to all points iñP, whose symbol sequence is symmetric with
respect to 0

X>1 ' {β.0
←
β }. (29)

The line T0 corresponds to all points iñP, whose symbol sequence is symmetric with
respect to 1

T0 ' {β.1
←
β }. (30)

Iterating the basic symmetry linesX>0 , X |1 or T0 shifts the point of symmetry to the left or
right. Combinations of these symmetries yield the structure of the code words of periodic
orbits in the symmetry classes shown in table 3.

Now the structure of the code words for a given symmetry in the full system can be
determined from the structure of the code words for the desymmetrized system. The result
is summarized in table 4. Notice that if one constructs code words with arbitraryα of the
form given forCX, CTX or CT, it is possible to obtain a code word with higher symmetry.
Furthermore, it is possible to obtain a code word which is not primitive. The only symmetry
class which is not incorporated into the above scheme using the symmetry lines are orbits
from CTX. The reason is that their code in the desymmetrized system does not have any
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Table 3. Form of the code words for periodic orbits in the desymmetrized system.

| > ⊥

| β
←
β 0β

←
β 1β

←
β

> 0β
←
β 0β0

←
β 1β0

←
β

⊥ 1β
←
β 1β0

←
β 1β1

←
β

Table 4. Form of the code words for symmetric periodic orbits of the full cardioid billiard.Y

andZ stand for an arbitrary single letter,α for an arbitrary word.

C
|⊥
full C>⊥full CT C

‖
X C

>|
X C

�
X

α
←̂
α α̂
←
α αY

←̂
α α̂Ŷ

←
α α

←̂
α YαZ

←
α αY

←
α α

←
α

of the symmetries, such as orbits fromCno. The only difference between them is that
orbits fromCno have an even number of 1’s, whereas orbits fromCTX have an odd number
of 1’s in the desymmetrized code. Thus, for a given code length orbits fromCTX in the
desymmetrized system occur much more often than their number in table 2 for the full
billiard might suggest. Actually, in the reduced system orbits fromCTX are even more
frequent than those fromCno.

4.2. Families of short periodic orbits

We call a periodic orbit a short orbit if the ratio of the geometric length to the number of
reflections is small compared with the average value of this ratio for the given period. Of

Figure 14. Examples of members of some families of short periodic orbits (a) AnBB ≡ Gn
for n = 11, (b) AnBBB for n = 11, (c) AnBABB for n = 11, (d) AnBABmAB ≡ GnFm for
n = m = 11, (e) AnBABABmAB for n = 7, m = 6, (f ) A9B2A7BAB6AB ≡ G9G7F6.
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special interest for the application of Gutzwiller’s periodic orbit theory [7] are families of
short periodic orbits where this ratio approaches zero, i.e. the orbits accumulate in length.
The code words of the simplest type of families have the formAnω, with ω starting and
ending inB. One family corresponds to fixedω and varyingn. Some examples are shown
in figure 14. The family of orbitsAnBB yields the shortest accumulation lengthl = 12.
Moreover, this is the only family of the formAnω with finite ω, which exists for arbitrary
n. All the other families of short orbits of this kind are not accumulating but instead are
pruned for a finiten > nmax. This is easily seen using the representation of the families in
the symbol plane. The coordinates ofAnω in the symbol plane are

γn = N(Anω)

2n+m − 1
= 1

2n+m − 1
N(ω) (31)

δn = N(An
←
ω)

2n+m − 1
= 2n

2n+m − 1
N(
←
ω) (32)

and thus limn→∞(δn, γn) = (δ, 0) with δ = 2−mN(
←
ω). Furthermore, it turns out that all the

points(δn, γn) lie on straight lines

γn = N(ω)

N(
←
ω)
(2mδn −N(←ω)). (33)

By shifting the code word or by considering a symmetric partner it is possible to obtain
δ ∈]0.375, 0.75]. If different words fulfill this criterion the one with the smallest distance to
δ = 0.5 is chosen. In figure 15 some examples are shown together with the pruning front.
From the figure one can read the last allowed orbits as well as the pruning mechanism. If
δ ∈]0.375, 0.5[ the family is s-pruned, whereas forδ ∈]0.5, 0.75[ the family isf -pruned.
Applying a similar rule to the three symmetric images of the fundamental pruning region,
shows that it can occur that a family is pruned by both mechanisms.

We observe that the pruning front is a monotonously increasing curve in the interval
[0.375, 0.5], and monotonously decreasing for [0.5, 0.75]. Moreover, it only reaches 0 at
0.375 and 0.75. Therefore, families ofany kind can only exist if at least one of their limit
points in the symbol plane is(0.75, 0). In particular the familyAnBB exists for anyn.

One can construct a variety of more complicated families, e.g. with the structure
AnαAmβ or AnαBmβ, see figure 14. The special caseAnBABnAB, see figure 14(d),

Figure 15. Sequence of points(δn, γn) in the symbol plane of some families of short orbits
Anω that are pruned together with the pruning front. The labels denote the corresponding shifted
code word of the first plotted member.
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has the accumulating lengthl = 24 and exists for anyn, because the corresponding limit
point in the symbol plane is(0.75, 0). Actually we think that there is an infinite number
of accumulating families. They can be constructed by introducing two combined symbols
Fn = ABnA andGm = BAmB. Now any sequence ofFn’s andGm’s gives an accumulating
family, as long as all the indices collectively go to infinity. One example with differentni
is shown in figure 14(f ). The length of the limit orbit of such a family is given by the total
number of the symbolsFn andGm multiplied by 12.

The instability of periodic orbits from accumulating families grows with increasing
period, because they must come arbitrarily close to the cusp. However, their instability
grows much slower than for generic orbits because they also get arbitrary close to the
parabolic linesF .

The pruning in the families of short orbits is related to the limiting orbit which almost
hits the cusp. It consists of a sliding motion and of a finite orbit hitting the cusp as illustrated
in figure 14. We now turn to the study of these finite orbits.

4.3. Finite orbits

In the quantum mechanical billiard problem discontinuities of derivatives of the billiard
map can play an important role (see, e.g. [40–42] and [25, 43–46] and references therein).
In the case of the cardioid billiard the singularity leads to the existence cusp orbits, which
we consider as finite orbits.

They start at an arbitrary angle in the cusp and eventually return to the cusp with an
arbitrary angle without the need to fulfill any reflection condition in the cusp. We think
that the investigation of orbits having a reflection in the cusp is already important from the
classical point of view: on one hand due to the connection to short periodic orbits and on
the other hand because cusp orbits are also extrema of the Lagrangian, as it is the case for
periodic orbits. This can be seen in the following way: the variation of the Lagrangian
L = L(φ1, . . . , φn) yields a system ofn-coupled nonlinear equations∇L = 0. A short
calculation shows that ifφi = ±π the corresponding equation

∂L
∂φi

∣∣∣∣
φi=±π

= ∂l(φi−1, φi)

∂φi
+ ∂l(φi, φi+1)

∂φi

∣∣∣∣
φi=±π

= 0 (34)

is fulfilled regardless of the values ofφi−1 andφi+1. This means that there is no reflection
condition to fulfill in the pointφi = ±π . Thus, in some sense the singularity looks like an
infinitely small circle, i.e. it can reflect into any direction. Notice that the above argument
does not hold if we look atL as a function ofsi . This dependency of the Lagrangian on the
choice of coordinates is due to the singularity. We will not consider cusp orbits as periodic
orbits, but instead as finite orbits with the same initial and final point in configuration space.
Numerically these orbits can either be found by a one-dimensional search in the Poincaré
map or by finding the stationary points the Lagrangian with fixed initial and final point.

In order to classify the cusp orbits we extend the symbolic dynamics with a third letter,
C, which corresponds to the linesS and0. For a cusp orbit starting inS, the next point lies
on 0−1, from which one iterates until the image point first lies on0. Since the momentum
is not defined in the next step we consider cusp orbits as finite orbits whose code word is
CαC, whereα is a code word consisting ofA andB. One could omit theC’s, but we find
it more convenient to have the number of letters in a code word correspond to the number
of reflections. Thus, the shortest cusp orbit, which runs along the symmetry line has the
codeCC, because it starts inS and has its next and last point on0, see figure 16(a).

Since the partition of the Poincarè section as shown in figures 6 and 7 is given by the
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Figure 16. Examples of finite orbits (a) CC, (b) CAC, (c) CAAC, (d) CABC, (e) CAAAC,
(f ) CAABC, (g) CABAC, (h) CAAAAC and (i ) CAABAC.

iterates of0, cusp orbits correspond to the intersections of these lines. Actually it is simplest
just to iterate0−1 and to look for intersections with0. After n iterations we have 2n+1− 1
intersections (ignoring pruning), i.e. at every iteration there are 2n new intersections, which
is exactly the number of cusp orbits one expects without pruning. Defining0−n−1 = Pn0−1,
the number of reflections of a cusp orbit which is given by the intersection of0−n−1 and
0, is n+ 2.

Similar to the case of periodic orbits, finite orbits can be classified according to their
symmetry using the symmetry lines. Intersections ofT0 and0−n correspond toT -symmetric
cusp orbits which have period 2n because the distance to0 and 0−1 is n − 1 forward
respectively backward iterations. Intersections ofX0 and 0−n yield X-symmetric cusp
orbits. In the same way cusp orbits withX1 symmetry are found. Starting on a symmetry
line, past and future are symmetric and thus the symmetry is reproduced in the cusp, i.e. aT -
symmetric orbit retraces itself also in the cusp and aX-symmetric orbit has aX-symmetric
reflection in the cusp. The exceptional period 2 cusp orbitCC has full symmetry. This is
not the case for any other cusp orbit.

By counting the number of intersections of the symmetry lines and iterates of0 (ignoring
pruning) we find that there are 2(n−2)/2 symmetric cusp orbits of even periodn and 2(n−3)/2

for odd n. Like in the case of periodic orbits the non-symmetric cusp orbits are the
overwhelming majority for largen. For a complete symbolic dynamics the number of cusp
orbits is exactly 2n−2, wheren is the total length of the wordCαC. So already this number
grows faster than the number of periodic orbits because we do not have to consider cyclic
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classes here, as has been observed in [25]. Furthermore, cusp orbits can be combined to
give multiple cusp orbits. Their number can be estimated using the topological polynomial
[47] for the symbolic dynamics with letters{A,B,CC}, which is 1− 2z − z2 = 0, such
that we obtainhtop = − ln(z) = ln(1+ √2) for the topological entropy. Therefore finite
orbits occur much more often than the periodic orbits for which thehtop = ln 2 in the case
of a complete symbolic dynamics.

We will now briefly describe the relation between cusp orbits and the families of
accumulating orbits. The familiesAnω performn successive reflections along the boundary,
which are followed by some other reflections after which the orbit returns to the approximate
sliding motion. For largen this family tends to the sliding motion plus a limiting cusp orbit.
If AnBαB is the code word for the family, the corresponding cusp orbit is given byCαC.
The largest angleχ between thex-axis and the limiting cusp orbit determines the maximum
number of consecutive reflections having the same letter. Only forχ = 0 can a family exist
for any n, otherwise we have a finite family of short orbits which do not accumulate.

5. Global properties of the billiard

In this section some global characteristics of the cardioid billiard are calculated. In the first
part we obtain an analytical result for the average distance between reflectionsl̄ and an
analytical estimate for the KS entropyhKS. The same quantities are then calculated using
averages over periodic orbits, where each orbit is weighted by its stability.

We first calculate dynamical averages by iterating the billiard map. Averaging over
several generic trajectories for 5× 106 iterations we obtain for the average length between
reflectionsl̄ and the Lyapunov exponent, which in our case equals the KS entropyhKS

l̄ ≈ 1.851 hKS ≈ 0.653. (35)

hKS is calculated according to [48], however, we use the linearized map (8). We can also
calculate these quantities analytically as we will now show.

For any billiard in the domain� the average length is determined by the area|�| and
circumference|∂�| [48] by transforming the average over the length functionl(s, p) on P
(36) into the volume of the energy shell (37)

l̄ =
∫
P
l(s, p)dµ = 1

2|∂�|
∫
P
l(s, p)ds dp (36)

= 1

2|∂�|
∫
�×S1

dx dy dβ = |�|π|∂�| i.e. for the cardioid (37)

l̄ = 3
16π

2 = 1.850 55. . . (38)

where dµ = 1
2|∂�| ds dp is the normalized Liouville measure onP because|P| = 2|∂�|.

The numerical average in (35) is in good agreement with this result.
An analytical expression for a lower bound onhKS was given by Wojtkowski in [16]:

hKS >
∫
P

log% dµ (39)

where% is the matrix norm (11). Since% contains the lengthl(s, p), which is given by the
root of a cubic equation we again pass to the generating function of the mapl(φ1, φ2). The
variables are transformed by

s(φ1, φ2) = 4 sin(φ1/2) (40)

p(φ1, φ2) = 〈v, T1〉 = 〈L(φ1, φ2), T (φ1)〉
l(φ1, φ2)

. (41)
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Sinces is independent ofφ2 we obtain for the Jacobian of the transformation

det
∂(s, p)

∂(φ1, φ2)
= 2 cos(φ1/2)

(
〈L′, T 〉 − 〈L, T 〉〈L,L

′〉
l2

)
/l (42)

where a prime denotes the derivative with respect toφ2. Since not all combinations(φ1, φ2)

correspond to allowed trajectories, we have to restrict the integration ranges. Moreover, we
use the symmetry of the system to restrict the integration to positiveφ1 and obtain

hKS >
1

|∂�|
∫ π

0

∫ π

−π+φ1

log%(φ1, φ2) det
∂(s, p)

∂(φ1, φ2)
dφ2 dφ1. (43)

From (8) we obtainad = (k1−1)(k2−1) whereki = lκi/ni . Therefore we have to evaluate
the following integral

hKS >
∫ π

0

∫ π

−π+φ1

log
(√
(k1− 1)(k2− 1)+

√
k1k2− k1− k2

)
det

∂(s, p)

∂(φ1, φ2)
dφ2 dφ1. (44)

The numerical evaluation of this integral giveshKS > 0.633. Even though Wojtkowski’s
theorem only gives a lower bound onhKS this value is surprisingly close to the numerically
measured value (35).

hKS can also be approximated by calculating the entropy of the partition of the Poincaré
sectionP into cells labelled by words of lengthn

hKS(n) = −1

n

∑
ω

pω lnpω (45)

where pω = µ(ω) is the size of the cell with labelω (see, e.g. [49]). Since the cell
sizes inP are quite hard to obtain we determine them numerically in the symbol plane.
This is done by calculating the probability with which each cell is visited by performing
many iterations of one initial condition. Thus, we numerically approximate the invariant
measure in the symbol plane by assigning a probability,pω, to every cell labelled by a
word,ω, of lengthn. The sum (45) extends over all allowed cells in the symbol plane. An
estimate for the topological entropy with respect to the code length is obtained by setting
p = 1/N(n), where the total number of allowed cells labelled by words of lengthn is
denoted byN(n) =∑ω 1:

htop(n) = −1

n

∑
ω

p lnp = 1

n
lnN(n). (46)

For n = 22 we obtainhKS ≈ 0.66 andhtop ≈ ln(1.98) ≈ 0.68. hKS is smaller thanhtop;
the difference tells us how much the invariant measure on the symbol plane deviates from
equipartition. The three values forhKS are in the expected order 0.63< 0.65< 0.66: the
analytical value is a lower bound and the value obtained from the symbol plane tends to
overestimate due to finite size effects.

5.1. Global properties from periodic orbits

Now we repeat the calculation ofhKS, htop and l̄ using periodic orbits. The main point
in the calculation of these averages is that the sum in (45) can be transformed into a sum
over periodic orbits of fixed length. Each cell visited by a periodic orbitγ is assigned a
probability given by the inverse of the eigenvalues e−uγ , from which the invariant measure
is approximated (see, e.g. [47, 50, 51]).

This approach can be illustrated by a plot of the distribution of periodic orbits in the
Poincaŕe section (see figure 17). We observe that the distribution is not as uniform as
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Figure 17. Plot of the points of all periodic orbits with code length up ton = 15 in the
Poincaŕe sectionP. The symmetry lines and the images/preimages of0 are visible, compare
with figure 4.

one might expect. Most obvious we have regions with very few periodic orbits in the
neighbourhood ofF , because these orbits are rather stable. The same structure can be
observed in the division ofP into cells in figure 7. In a region where the cells are small
there is a high density in contrast to regions with large cells, where the density is low.
As we already discussed, the accumulating families are not only close toF but also close
to S and therefore close to0 and its images and preimages. These families evade the
region surrounding0 exactly at the points, where there exists a corresponding cusp orbit.
In the neighbourhood of parts of0 arounds ≈ 2.5 have a high density of periodic orbits.
These orbits come close to0 without having been close toF , and are therefore extremely
unstable, which is in accordance with their high density. Moreover, some of the basic
symmetry lines and their iterates are visible. The reason for a relatively high density of
points along the symmetry lines is the fact that they are one-dimensional. Thus, the small
fraction of symmetric orbits has to fill only a ‘small’ set inP, whereas the large number of
orbits without symmetry has to fill large areas inP. Plotting only orbits of a higher period
makes the symmetry lines less visible. In the symbol plane the periodic orbits are much
more uniformly distributed, see figure 18.

The weighted average over periodic orbits of lengthn of a quantityf (u, l) is now given
by

〈f 〉wn =
∑

γ f (uγ , lγ )e
−uγ∑

γ e−uγ
(47)

where the sum runs over all periodic orbitsγ of code lengthn, including multiple traversals.
Although for largen we do have

∑
γ e−uγ ≈ 1 [52] we include this term for normalization.

Using the periodic orbits up to code length 20 we calculated the mean stability exponent
per reflection〈u〉wn /n, i.e. the Ljapunov exponent. The values approach a constant from
above for increasingn with 〈u〉w20/20 = 0.657, which agrees quite well with the value of
hKS in (35).
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Figure 18. Plot of the points of all periodic orbits up to code
length n = 15 in the symbol plane; compare with figure 17
where the corresponding points are presented in the Poincaré
section.

For the average distance between consecutive reflections we obtain〈l〉w20/20 = 1.864,
where the values are slowly decreasing for increasingn, such that we have good agreement
with the analytical result (38). The conversion of averages measured with respect to the
discrete time Poincaré map and the one measured in phase space is just given by the factor
(38). Thus the corresponding quantities for continuous time are given by

hKS(20)/l̄ = 0.36 1
20〈u〉w20/l̄ = 0.36. (48)

Of coursehKS/l̄ can also be approximated by averagingu/l which gives〈u/l〉w20 = 0.363.
For the family of billiards (1) Robnik calculated the KS entropy in [20]. He gave values for
ε close to 1, from which we extrapolatehKS/l̄ ≈ 0.34 for the cardioid, which is consistent
with our values.

Finally, we calculate the topological entropyhtop from the growth of the number of
periodic orbits by consideringhtop(n) = 1

n
lnN(n), whereN(n) is the total number of

points belonging to all the periodic orbits of periodn, including multiple traversals. We
obtain a plateau forn > 10 with htop ≈ 0.683≈ ln 1.98, which is in good agreement with
the value obtained in the symbol plane.

5.2. Statistical properties of periodic orbits

The following investigations are based on periodic orbits up to code length 20 (see, e.g.
[27, 37, 53–55] for similar studies for other systems). The principle difference of the
averages〈〉o taken in this section to the averages〈〉w calculated in the previous section
is that now all periodic orbits are equally weighted, i.e. we have a uniform weight in the
symbol plane. Thus, we transfer the picture of periodic orbits in the Poincaré section
(figure 17) into the symbol plane (figure 18) and averagef (u, l) over periodic orbitsγ of
code lengthn by

〈f 〉on =
1

N(n)

∑
γ

f (uγ , lγ ). (49)

Looking at figure 18 we first observe that in fact the orbits are distributed rather uniformly
in the non-pruned region. The symmetry lines are almost invisible. Only the accumulating
families give rise to holes that are not related to the pruning front.

In the previous section we calculatedhtop in order to characterize the growth in the
number of periodic orbits with the period. Here we study the growth behaviour of the
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numberN (l) of periodic orbitsγ with geometric lengthlγ below a given lengthl. Because
the cardioid billiard is strongly chaotic one expects the typical exponential proliferation

N (l) ∼ eτ l

τ l
(50)

whereτ is the topological entropy with respect to the geometric length of orbits. However,
this classical staircaseN (l) is not well defined in our case because of the families
accumulating in length (the same happens, e.g. in the case of the stadium billiard or the
wedge billiard [54]).

Therefore we define4acc as the set of all periodic orbits,γ , whose corresponding code
has more than five consecutive lettersA or B, and4reg as the set of periodic orbits with
up to five consecutiveA or B. This choice is somewhat arbitrary, but motivated by the
observation that orbits from4acc already have the geometrical structure which is typical
for the limit orbit of the considered family. We defineNreg(l) as the counting function of
the number of orbits from4reg with geometric length less thanl. In figure 19N (l) and
Nreg(l) are shown in logarithmic representation using the periodic orbits up to code length
20 together with a fit of the asymptotic behaviour (50) withτ ≈ 0.345. N (l) shows the
strong increase next tol = 12, which is caused by the familyAnBB. This step would even
be more pronounced, if orbits of higher period had been used. In contrast the logarithmic
plot of Nreg(l) is a much ‘smoother’ curve, with most of these ‘steps’ removed.

In order to verify that the above splitting selects the accumulating families we plot the
distributionpn(l) of lengths for a given code length. In figure 20(a), where all orbits with
code length 14 were used, long tails down tol = 10 are visible. In contrast in figure 20(b)
only orbits from4reg were used, and the outliers are removed.

We calculated the average length of periodic orbits and observed the expected linear
increase of the mean length〈l〉on = nl̃ with the code lengthn, with l̃ = 1.99 using all orbits
and l̃ = 2.054 using orbits from4reg. The variance of the distribution is also linear inn.
For orbits from4reg we find thatσ 2

n ≈ σ̃ 2n for n > 15, with σ̃ 2 ≈ 0.47. Furthermore,
we observed, as in the case of the hyperbola billiard [27], thatpn(l) are approximately
Gaussian distributed. This is demonstrated in figure 20(d) where eachpn(l) is shifted to
the origin and the variance is normalized.

Figure 19. In (a) the logarithmic representation of the number of periodic orbits with geometric
length less thanl is shown using all orbits up to code lengthn = 20. In (b) Nreg(l) is shown in
logarithmic representation where all orbits with more than five consecutiveA or B are excluded;

also shown iseτ l
τ l

for τ = 0.345.
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Figure 20. Probability distributionpn(l) for n = 14: (a) all orbits are included, (b) only orbits
with not more than five consecutiveA or B are used, and in (c) the difference between both
is shown. In addition in (a) and (b) a Gaussian distribution is shown by the broken curve. In
(d) the shifted and normalized distributionspn(l) are shown forn = 14, . . . ,20 using the orbits
from 4reg.

In [27] a relation between the number of cyclic classes of code words and the classical
staircaseN (l) was derived under the assumption thatpn(l) has a Gaussian distribution and
that the mean length〈l〉on and the varianceσ 2

n depend linearly onn. The result adopted to
our case is

τ ≈ 1

σ̃ 2

(
l̃ −

√
l̃2− 2σ̃ 2htop

)
= htop

l̃

2

1+
√

1− 2htopσ̃ 2/l̃2
(51)

wherehtop denotes the topological entropy with respect to code words. In the case of orbits
from 4reg we obtainhtop = 0.672 and thereforeτ ≈ 0.34, which is in good agreement with
the valueτ ≈ 0.35 obtained from the fit ofNreg(l) with the asymptotic behaviour. We take
the consistency of these results as a justification of the above splitting.

We also considered the distribution of the stability exponentsuγ for fixed code length
n and found thatuγ is centred around a mean〈u〉on = nũ with ũ = 0.70 using either all
orbits or only orbits from4reg.

A further common statistic is the spacing between neighbouring lengths. In order to
obtain a mean spacing of one, the asymptotic behaviour (50) is used to unfold the length
spectrum. The result using orbits from4reg with length l < 30 is shown in figure 21 is in
agreement with the Poisson distributionP(s) = e−s .

It is also interesting to look at the dependence of the stability exponentsuγ versus the
geometric lengthlγ . The result is shown in figure 22. Some of the families are clearly
visible as series of points with accumulatinglγ and thereby increasinguγ .
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Figure 21. Length spacing distributionP(s) (full line) together with the Poisson distribution
e−s (broken curve).

Figure 22. Plot of the stability exponentsuγ versus the geometric lengthlγ using all orbits up
to code length 20.

6. Summary

In this paper we have developed a symbolic dynamics for the cardioid billiard by
constructing a partition of the Poincaré sectionP using two symbolsA and B. After
completion of the part on the symbolic dynamics a preprint appeared [25], where the
same coding was found independently and used to study diffraction effects of the quantum
mechanical system.

For the symbolic dynamics it turned out that not every sequence of symbols is allowed.
We obtained the two pieces of the pruning front, which are related to the two pruning
mechanisms in the system. Using the symbolic dynamics, periodic orbits can be labelled
in a unique way. Assisted by the knowledge that all orbits correspond to maxima of the
Lagrangian we calculated a large number of periodic orbits up to code length 20. Complete
sets of higher-periodic orbits are hard to obtain because some of them are extremely unstable
due to the unbounded curvature. Using the symmetry lines of the billiard map, we presented
a classification of periodic orbits with respect to their symmetry properties. This was first
obtained in the symmetry reduced symbolic dynamics and then translated back to the full
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system. Combining Wojtkowski’s result about convex scattering billiards with a geometric
argument in the symmetry reduced system we were able to determine the Morse indices
from the code words.

Studying families of periodic orbits with short geometric length provides a good
application of the pruning front, because it allowed us to determine whether a family exists
for arbitrary code length, or whether it is eventually pruned. In the latter case a plot of the
points of the periodic orbits in the symbol plane allows for the determination of the last
allowed member of the family. The converse argument enables us to write down an infinite
number of families that accumulate in length. Furthermore, it turned out that cusp orbits
appear rather natural even from a merely classical point of view as parts of the possible
limit orbits of the short families.

In the last section we calculated an estimate for the KS entropy and found good
agreement with numerically calculated values. Averaging the periodic orbits we find
consistent values for the KS entropy and the average length between reflections. We illustrate
the idea of the periodic orbit averaging by a plot of periodic orbits in the Poincaré section.
The topological entropy is quite close to ln 2 because the pruning sets in rather late.

To obtain well-defined statistics despite the presence of accumulating families we
suggested a method to subtract the accumulating families. This procedure might also
be helpful when using Gutzwiller’s periodic orbit theory, where families of accumulating
periodic orbits have to be treated separately. We believe that this method might be useful
for other systems with accumulating families.

With the complete set of periodic orbits, knowledge of the Morse indices and an
understanding of accumulating families and cusp orbits all the elements for the periodic
orbit quantization of the cardioid billiard are available. Eventually the same program should
be carried out for Robnik’s family of billiards, at least close to the cardioid, where it can
be expected to have large chaotic areas in phase space. On one hand, the system then
lacks the singularity which makes it simpler on first sight. On the other hand we think
that it becomes more difficult, because there will be inverse hyperbolic orbits, such that it
is not sufficient to look for maxima of the Lagrangian in order to find periodic orbits and,
moreover, a binary symbolic dynamics will not suffice.
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