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Abstract. The periodic orbits of the strongly chaotic cardioid billiard are studied by introducing

a binary symbolic dynamics. The corresponding partition is mapped to a topologically well
ordered symbol plane. In the symbol plane the pruning front is obtained from orbits running
either into or through the cusp. We show that all periodic orbits correspond to maxima of the
Lagrangian and give a complete list up to code length 15. The symmetry reduction is done on
the level of the symbol sequences and the periodic orbits are classified using symmetry lines.
We show that there exists an infinite number of families of periodic orbits accumulating in length
and that all other families of geometrically short periodic orbits eventually get pruned. All these
orbits are related to finite orbits starting and ending in the cusp. We obtain an analytical estimate
of the Kolmogorov-Sinai entropy and find a good agreement with the numerically calculated
value and the one obtained by averaging periodic orbits. Furthermore, the statistical properties
of periodic orbits are investigated.

1. Introduction

A key step towards an understanding of the behaviour of a dynamical system is achieved
by finding a symbolic dynamics. By means of the symbolic dynamics trajectories can
be labelled by doubly infinite symbol sequences (see, e.g. [1-6] and references therein).
Periodic orbits are represented by periodic sequences and can be systematically searched
for once the coding is known. The knowledge of a complete set of a large number of periodic
orbits up to a given geometric length is necessary for the application of Gutzwiller’s periodic
orbit theory [7], which relates the quantum mechanical density of states of the quantized
billiard system to a sum over classical periodic orbits.

For hyperbolic systems the standard approach to a symbolic description is to construct
a Markov partition using the expanding and contracting directions. For a non-uniform
hyperbolic system there does not exist a finite Markov partition. Therefore we use a
different approach based on the singularity line of the system, which yields a symbolic
description with a few symbols only. However, not all symbol sequences are realized as
orbits of the dynamical system; the grammar describing the admissible sequences is usually
infinitely complicated. To deal with this more complicated case the idea of a pruning front
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in the symbol plane was introduced in [8]. These methods have been applied to a number
of systems (see, e.g. [9-15] and references therein).

In the class of billiards inside simply connected domains of the Euclidean plane ergodic
examples typically have either families of orbits accumulating in length, singularities in the
boundary or non-isolated parabolic families. In the case of the cardioid billiard, which has
been rigorously proven to be strongly chaotic, i.e. it is ergodic, mixing;-gystem and
even a Bernoulli system [16—-19], we have accumulating families and one singularity. The
relation of the two in the cardioid billiard is quite interesting and a thorough understanding
of their effects is a prerequisite for the semiclassical quantization of this system.

There are already several results for both, the classical and quantum mechanical cardioid
billiard. The cardioid is the limiting case of a family of billiards introduced by Robnik [20],
see also [21, 22] and references therein. The statistical properties of the eigenvalues of the
guantized cardioid billiard were studied in detail in [23, 24]; see also [25], where the focus
is on diffraction effects. A lot of work has been done on Robnik’s family but the classical
mechanics of the cardioid has not been analysed in depth; it is this gap we want to fill in
with this work.

The paper is organized as follows. In section 2 the cardioid billiard and the billiard map
are defined. We show that products of linearized maps always have a positive trace and that
all orbits are maxima of the Lagrangian. Subsequently a discussion of the symmetries
of the billiard map is given. In section 3 the symbolic dynamics is defined and the
corresponding partition of the Poinéasection is illustrated. The initial partition is given
by the discontinuity of the map. The pruning of code words is discussed in the symbol
plane. In section 4 the periodic orbits are classified according to their symmetry by using the
symmetry lines of the desymmetrized billiard. We give a list of the number of periodic orbits
in each symmetry class up to code length 15. Families of periodic orbits with short geometric
lengths and their relation to cusp orbits are investigated next. It is shown that most of them
eventually get pruned. However, there remains an infinite number of families accumulating
in length. In section 5 we obtain an analytical estimate for the Kolmogorov—Sinai (KS)
entropy and find good agreement with the value obtained from numerical methods. The
average length and the KS entropy are calculated using the periodic orbits. Finally, we
investigate the statistics of periodic orbits.

2. The cardioid billiard

A billiard inside a two-dimensional Euclidean domaif?, is given by the free motion

of a point particle inside with elastic reflections at the boundady?, i.e. the angle of
incidence equals the angle of reflection. The cardioid billiard is the limiting case of a family
of billiards first studied by Robnik [20]. Their boundary in polar coordingesp) is given

by

p(¢) =1+ €cosp ¢ €[-m, 7] @
We restrict our attention to the cardioid (see figure 1) which is obtained fer 1, or
implicitly by

Flx,y) =@+ =02 - +)) =0 (2

where(x, y) = r(¢) = (p(¢) cosg, p(¢) Sing). At ¢ = £x the cardioid has a singularity
located at the origim () = (0, 0).
From the above definition (1) we can easily derive the curvatige = ;oo the

unit tangent vectof’ = (T, 7y) = (—sin(3¢/2), co(3¢/2)), and the differential of the arc
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Figure 1. The full and desymmetrized cardioid billiard.

length d—; = 2c0g¢/2). Thus, the arc length is related top by s = 4sin(¢/2). The area
of the cardioid is|2| = 37/2 and its circumference iI9Q| = 8.

2.1. Poincag map

We now derive the Poincarmap from bounce to bounce in coordinates (s, p), where

p is the component of the velocity parallel 1 right after the reflection. The Cartesian
components of the unit velocity of a billiard ball starting oro2 atr(¢) is determined by
the angleg € [—n/2, 7/2] measured with respect to the normél= (—T,, T,) pointing
inward. The velocity in thel’, N coordinate system is denoted by, n) = (sing, cosp),

so that we obtainv = (—co98 — 3¢/2),sin(8 — 3¢/2)). The rightmost point ofoQ
corresponds to arc length= 0, so that the Poincarmap P is defined on the rectangle
P =[-4,4] x [-1, 1]. Starting atr(¢(s)) in the directionv(¢(s), B(p)), the rayr + tv
intersectsQ2 atr’ = (x’, y), which is given from the solution of a third degree polynomial
derived from (2). The new’ resp.¢’ and p’ are then given by

¢’ = arctar(y’/x")
p =sin(p'e) = (T',v') =(T', v) = sin3(¢’ — ¢)/2+ B).

The complete map : & = (s, p) — & = (s/, p’) is invertible and area preserving, because
s and p are canonically conjugate. For convenience we sometimeg uisstead ofs, but
without mentioning we assume it to be expressed in terms of

The two curves

Sy =1{§ ePls =£4} (4)

correspond to orbits which start in the singulakity= 4+, i.e. on the right or left boundary
of P. For the image of points fron$,. under P one hasy’ = arctar(v,/v,) because of
r = (0,0). Thus,¢’ = £7/2 — 8 and using equation (3)' = —sin(xw/4 — B/2). The
two image curves join at the origin ¢*. We denote them by

Iit={& € Plp=—s/4 £s >0} (5)

such thatP(S:) = F;l. Each of the curvess, and S_ has a fixed poini4, —1) and

(—4, 1), respectively, which corresponds#g = —1. The physical motion starting at these

fixed points is a sliding motion along the boundary, either counterclockwise or clockwise.
Note that although(—7) = r(7) = (0, 0) we take them as different points equipped

with their different tangent vectors. In a differentiable poinb&f one can start in directions

B e[—n/2,7/2]. In singular points this interval can be different; in our case at (0, 0)

®)
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we can go in any direction. Points starting with > 0 are attached t¢ = =, the ones
with v, < 0 belong to¢p = —m. The unique point withr = (0, 0), v = (1, 0) in phase
space can be assigned either of the two coordingep or (—4, —1) in P. This is only
a coordinate singularity an# correctly maps both points onto the same pdint (0, 0),
where the images o, meet. Strictly speaking the map is defined on a rectangle with
these two opposite corners identified.

Two other special lines ifP are its upper and lower boundary

Fr=1{ ePlp==£11s5#£4}. (6)

Note thatF. are half open intervalsF. defines starting points outside of the singularity

with a velocity parallel tof', i.e. 8 = +£7/2, p = £1. All the points of 7. are fixed points

of the map, although physically they correspond to the above mentioned sliding motion.
Reversing the velocity oir~* (omitting the index+ refers to both lines) we define the

line

I ={£ePlp=s/4 (7)

which is the set of initial conditions that will immediately hit the singularity. Thereforé

is the mirror image of” with respect to the-axis. I' is of utmost importance, because this
line turns out to be (i) the discontinuity of the map, (ii) the boundary between our primary
symbol regions and (iii) the origin of the pruning frort. separates two region$ and B

in P, see figure 2. We consider and B as open sets, i.e. without the linés, S, andT.

Figure 2. The regionsA and B separated by in the Poincag section together with the fix
lines 71 and the singularity liness,.. The shaded regions correspond to four intersections of
the liner + tv with the boundanp 2. In the white regions there are only two intersections.

In order to understand the ‘kneading propertiesPoive need to know the behaviour of
P nearl'. SinceP is discontinuous ol there are two different limits o on I". Orbits
starting in the shaded region in figure 2 will reflect off the boundary very close to the cusp
while orbits on the other side @f just miss the cusp. We denote the corresponding limit map
in the shaded region b, and find & denotes the sign of) P,(s, s/4) = (£4, £1—5/2).
On the other side of the limit map isP;(s, s/4) = (—(£4 — ), (£4 — 5)/4). In figure 3
the kneading property is illustrated. Here the lifigsand56 map according t@;, while
85 and43 map byP,.

Since the map is discontinuousatthe image of" under the Poincé&rmap is not well
defined. Moreover, there is no unique tangent vecta$ imecause the boundary curve is
not differentiable in this point. Note that we can assign the coordisiate +4, but we
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Figure 3. Demonstration of the kneading property of the billiard map. The left picture shows
the regionsA and B which are mapped by to give the picture on the right-hand side®
‘kneads’ triangleB by sliding point 4 to the lower right corner, while in turn point 1 is taken to

the middle. The remaining points 2 and 3 stay fixed. Note that the former centre 4 becomes a
corner and vice versa for 1. In a similar wayis deformed undefP, by taking 5 to the upper

left corner, and moving 6 to the middle. The mappiAghus contracts in the direction af,

and expands along 2.

cannot specifyp’ for § € I'. One might be tempted to define the imagel'oaccording to
its limit under Py, because also the corresponding tangent vectdt.ircan be defined by
an appropriate one-sided differentiation. This is, however, misleading as we will see in the
discussion of finite orbits starting and endingSn

If we consider the desymmetrized billiard, see figure 1, the corresponding billiard map
P defined onP = {& = (s, p)|s € [0, 4], p € [-1, 1]}, is obtained by first using for a
givené € P; if & € P we haveé’ = &/, otherwisef’ = (—s', —p').

2.2. Linearized map

For an arbitrary billiard the linearized Poinéamap fromé; to & can be expressed as (see,

e.g. [26])
— 1/”’2 0 kl -1 -1 ni 0
DPZl_( 0 nz)((k1+k2—klkz)/z kz—1)<o 1/n1) (®)

wherek; = lk;/n; andk; andn; denote the curvature and normal component, respectively,
and/ is the geometric length between the two reflections. For a periodic orbit this reduces
to the more familiar form for the monodromy matrix (see, e.g. [27]).

We will now show that every periodic orbit has positive trace (in this statement and for
the rest of this section we excludg). The argument is along the lines of Wojtkowski's
pioneering work [16], but we will use a slightly different form due to Wittek [28], who
applied it to the wedge billiard. We now prove thatP,; always has the following checker
board structure

(£5) ©

Note that the product of two checker board matrices is again a checker board matrix. Since
n; > 0 and/ > 0 we need to show; > 1 and

—+ - <L (10)

Because of; > 0 we havek; > 0 and therefore (10) implies > 1. Evaluating the trace
with these inequalities we find that TxP,; > 2, where equality would hold fdn, = k, = 2.
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Following [16] we introduce a matrix nhorm
Q(Ccl Z)zx/ad—i-\/% (11)

such thato(M1M3) > o(My)o(My) if M; has the above checker board structure and
detM;) = 1. If inequality (10) holds we haved > 1, such thap(M;) > 1. Therefore we
haveo(M) > 1 for the monodromy matri®/ of a periodic orbit and reversing the argument
we obtain TrM > 2 such that every periodic orbit is direct hyperbolic if (10) holds.
Starting from the explicit description of the Poinéanap in the previous section it seems
quite hard to obtain (10) because the solution of a cubic equation is involved. Therefore
we now look at the generating function of our map (see [29] for a review), which is just
the length between successive reflections(at) andr(¢,). Note that in order to obtain
the area preserving map in coordinatest = (s, p) we should parameterize by and
s2. However, the calculations are more conveniently done Wi, ¢,). Denoting by
L = L(¢1, ¢2) = r(¢2) — r(¢1) the vector joining the two reflection points,

l($1, $2) = |L($1, $2)| = 2\/sin2 A(cog A + 2 cosd cosA + 1) (12)

where® = (¢1 + ¢2)/2 and A = (¢1 — ¢»)/2. The unit velocity is given by = L/[ and
we obtainn, = (N1, v), no = — (N>, v) and thus
cog A + 2cosd cosA + 1

ki = +1%k;/(N;, L) = 3 . . 13
i/l ) 2c0% A 4+ 3cosd cosA + 1+ sindsinA (13)

where+ and — correspond td; andk,, respectively. Finally

1 1 22co2A+3cosdcosA+1 4
—4y==° + * =1-— __sinfA<1 (14)
k1 ko 3 coRA+2cosdcosA +1 32

proves inequality (10). The geometric origin of this relation is the convex scattering property
[16] of the cardioid, i.ed%(x~1)/8s? > 0. There are a some very important consequences.

e The maximum number of conjugate points along a periodic orbit is given by the
number of reflections. The reason for this is contained in the optical interpretation of (10)
already described by Wojtkowski [16]: there is enough time between successive reflections
in order for a conjugate point to occur. Since for a free motion there cannot be more than
one conjugate point, the above statement follows.

e The eigenvalues of the monodromy matrix of periodic orbits are always positive, i.e.
all periodic orbits are direct hyperbolic. Combining this with the fact that the maximal
number of conjugate points of a periodic orbit equals the number of reflections, and since
our map is a twist map (the upper left entry InP,; is always negative), we conclude
that periodic orbits arenaximaof the Lagrangian = Y I(¢i—1, ¢;) [29,30]. Thus, the
numerical search for periodic orbits is very much simplified, because we do not have to
find saddle points of (see [27, 31] for related results).

e \We can obtain an analytical estimate (from below) of the maximum Lyapunov exponent
and therefore also for the KS entropy by a theorem from [16], see section 5.

Note that the second statement only holds in the non-desymmetrized system. This is one
of the reasons why we think that for the cardioid it is worthwhile to study the non-reduced
system. Furthermore, notice that the convex scattering property, which is the basis for all
the above, does not hold for any other member of the family of billiards (1), which are
therefore much more difficult.
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2.3. Symmetries

The time reversal symmetry of a billiard combined with the spatial symmetry of the cardioid
gives us a number of symmetry classes of orbits. We will not pass to the desymmetrized
billiard map but instead do the symmetry reduction on the level of the symbolic dynamics.
Here we discuss the manifestation of the symmetries in the map. In the following sections
this will be translated into symbol plane.

The time reversal symmetry in phase space is expressed by(x, y, v,, vy) —
(x,y, —vy, —v,) and the reflection symmetry B (x, ¥, Uy, Vy) = (X, =y, vy, —vy). The
corresponding involutions of the Poinéamap arel’ and X, where the latter is obtained
from TR. For T we find

T:(s,p) > (s, —p). (15)
which allows for a simple expression of the inverse magPas = T PT. The involution
corresponding to the spatial symmetry is

X (S, p) g (—S, p) (16)

X andT are involutions:72 = id, X2 = id, detl = —1, and defX = —1.
Furthermore, we hav®™ = XP"X and P™" = TP"T, and thus we define two
families of involutions
T, = P'T T? =id det7, = —1 n=-+142... (17)
X, = P"X X2 =id detx, = -1 n==41+2.... (18)

n

The fixed point sets of involutive symmetries, the so-called symmetry lines, are useful in
finding symmetric periodic orbits [32] and in their classification [33]. The symmetry lines
are defined byZ, = {£|T,,¢ = &} and X, = {£]|X,& = &£}. The setZ, contains all the orbits
starting at right angles on the boundary, whillg contains all orbits starting at the rightmost
point of the cardioid with arbitrary angle:

To={€Plp=0} Xo=1{§ e Pls =0} (19)
All the symmetry lines can be obtained by iteratifig 7, Xy and X3, because [32]

Ty = P"To Tony1=P'"Ty

X, = P" X Xopy1 = P XL,

The equationsPTé = & for 7; do not have a solution in billiards without potential and
therefore alsdly, .3 = #. The symmetry lineX; = {¢§|PXE = & : (—s', p) = (s, p)}
corresponds to orbits that intersect theaxis at right angles. Therefore we introduce the
suggestive notation

X, = X, Xy = Xoria (21)

(20)

related to the geometric form of the corresponding periodic orléiisls obtained by using
(3) which yields the condition s8¢ + 8) = sin(8) and finally

X" = (&lp = —cos3¢/2). ¢ € [0, 7/2]} (22)
Xy = (&|p = cos3¢/2). ¢ € [-7/2,0]} (23)

because fotg| > 7/2 we cannot cross the-axis.

If we consider the family of billiards (1) the s€tdoes become a symmetry line. In the
spirit of this notation we should call it;". Moreover, its preimag® 1(X;) = X<, =T
and its imageP (Xy) = &, = '~ are well defined in this case. The interpretation of
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Figure 4. The symmetry lines in the Poin@sectionP. 7 corresponds to orbits starting at
right angles on the boundanyg contains all orbits starting in = 0, and.X,™ corresponds to
orbits intersecting the-axis at right angles.

the line of discontinuityi” as a symmetry line leads to a nice interpretation of finite orbits
starting and ending i.

IntersectionsX, N &,,, X, N7, and 7, N 7, of symmetry lines are periodic orbits.
Intersections of symmetry lines of the same tyffeor 7 are periodic orbits with (not
necessarily primitive) periotin — n| [32]. If X, intersects7, we instead have the period
|2n — 2m|. This is easily seen in the following way: We hay8T& = & and P"X& = &,
henceP" T X& = £ which in turn impliesP2"~™¢ = &. After symmetry reduction we
always find the periodm — n|.

Let us now study the intersections of symmetry lines visible in figure 4. Already the
basic linesTy and Ay intersect a& = (0, 0), but the corresponding orbit is not periodic but
instead a finite orbit running along theaxis. The point = (0, 0) is also an intersection
point of I andI" 1, i.e. the corresponding orbit starts &h is mapped td"~! and I and
back intoS (with undefinedp’). The periodic orbit with the shortest period (besides all the
parabolic fixed points otF.), running vertically up and down, is given by the intersection of
7o and X" at (+2, 0) respectivelyp = +7/3. There is one more intersection in figure 4:
Xl' has endpoints o’. The (well defined) preimage of this point dhis on I'"1, so
that this triangular-shaped orbit has two reflections besides the point in the singularity. A
discussion of symmetric orbits with a higher period will be postponed until we have the
symbolic dynamics at hand.

3. Symbolic dynamics

The discussion of the Poindamap and its discontinuities suggests a natural choice for the
initial partition of P: regionsA and B as separated by. For a non-uniform hyperbolic
system with singularities the singularity lines are a natural candidate to define an initial
partition. For a given velocity o2 one can easily read its symbol as illustrated in
figure 5. Transforming this description in the Poireaection to the one in configuration
space means to consider two consecutive pajtand ¢, on the boundary. Ifp, > ¢1

the letterB is assigned for,, if ¢» < ¢1 we obtainA. Furthermore, we exclude the cases
¢1 = ¢2, p1 = £ and ¢, = 7 in order to ensure that the regiodsand B correspond

to open sets irP.
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Figure 5. Examples for the determination of the symbealsand B in position space by the
following rule: Connect the singularity with the current point. Now determine if the velocity
vector is inside the sector formed WS and the oriented tangent vector. If the velocity vector
is inside the sector the® is assigned, otherwisd. In the left example, the symba® is
associated, whereas in the right example, the corresponding symhol is

The construction of the partition is as follows. If we superimpbsandI’~ we obtain
four cells inP labelledA.A, A.B, B.B, andB.A which are shown in figure 6. The forward
image of these cells generates ‘past’ striges., BA., AB., and BB., basically along the
direction of '~ ordered by increasing on X,. The operation of? on a symbol sequence
(word) just shifts the dot to the right. The sequencR. for a strip means that its preimage
is in .B and moreover in that part o3 whose preimage is inA.

The backward images of the initial ce#s A, A.B, B.A, andB.B give stripes elongated
in the direction ofl" labelled.AA, .AB, .BA and.BB, which are just the images of the
past stripes undef. The new wordsAA, .AB, .BA and.BB tell us about the future of
a given strip. The intersection of these two sets of stripes generates a partitmntd
24 cells, also displayed in figure 6; each cell is uniquely labelled by four symbols. In [34]
it is shown that the images and preimages of the singularity lines are increasing/decreasing
curves and that they intersect tranversally. Thus, the refinement of the partition gives a finer
and finer subdivision, such that we conjecture the symbolic dynamics to be unique for the
set of orbits that never hit the singularity.

3.1. Symbol plane

For any worde.o» = ...s_p5_1.5152 ... the coordinatess, y) € [0, 1] x [0, 1] in the symbol
plane (see [2, 3]) are calculated by

o0 00
y=Y w2t =) sz 24)
i=1 i=1

wherey is the ‘future’ coordinate andl is the ‘past’ coordinate. In the context of numerical
interpretations; is zero (or one) for symbal (or B).
A quite surprising observation is that for the cardioid billiard the ordering of stripes in
the Poincag section corresponds to the ordering of wofdls/) in the symbol plane. Thus,
the symbolic dynamics is already well ordered [8, 35]. The dynamics in the symbol plane
is a shift on the symbol sequences, i.e. it maps according to the baker map (see, e.g. [36]).
Figure 7 shows the onset of pruning. For symbol length 8 we h8wells, i.e. the 16
past and 16 future stripes intersect pairwise. At symbol length 10 this is no longer true.
The future stripe A B4, which is the first one below does not intersect the outermost past
stripe B®., so that there is no cell with the labBP.A B* (see figure 8 for a magnification of
the relevant region irP). In the magnification it is also visible that the future striged*
abover still intersects the past stripB®., such that the celB%.BA* exists.
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Figure 6. The division ofP by preimages of" and images of" ~1 into 22 cells with 2 symbols,

2% cells with 4 symbols and®cells with 6 symbols. On the right-hand side the corresponding
division of the symbol plane is shown. Every line has 1, 3 or 7 intersections with other lines,
respectively.

To find out systematically which cells are forbidden we plot the truncated symbolic past
and future for points from a generic trajectory in the symbol plane (see, e.g. [35]). The
result is shown in figure 9. The picture is symmetric under reflections with respect to the
diagonals. This is caused by the underlying symmeffieX and7 X: For a worde.w the

symmetry operations are realized by reading backwards and by taking the complement

a.o. T is realized byZE.oT, and X is represented b%.& alone. ThusT X is represented
by @.@. Using equations (24) one can easily calculate the action of these operations in the
symbol plane. For a given word,w, with coordinategs, y) in the symbol plane we have

To.w

w.a TG, y)=01—y,1-3§)
Xow = w.a X, y) = (v,9) (25)
TXa.w = 6.6 TXG,y)=(1-81—1y).
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Figure 7. The division of P into 210 — 4 cells with 10 symbols. At this iteration level four
lines have less than 31 intersections, indicating the onset of pruning.
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Figure 8. Magnification of figure 7. The upper right Figure 9. 10° iterations of a single orbit shown in the
stripe is BS., the stripe above is .BA%, and.AB*  symbol plane truncated to word length<210.

is the one below. Since the stripe#®. and .AB*

do not intersect, the sequen®®.AB* is forbidden,

whereas BA* and B. still intersect, such thaB®. BA*

is allowed.

Similarly we can define the basic symmetry lines for the symbol planes given by the
diagonals = y and7j is the other diagonal + y = 1.

3.2. Pruning front

Returning to the onset of pruning at word length 10 clos€ tone expects that the origin

of pruning is the singularity of the cardioid. Therefore, we now study the set of symbol
sequences of orbits that almost hit the singularity. Two possibilities arise: on one hand the
orbit may just miss the singularity, or on the other hand, it may be reflected very close
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Figure 10. Magnification of the symbol plane around the primary pruning region. sfiining

front left of § = 0.5 and thef-pruning front to the right separate allowed and forbidden code
sequences. The squares of lengtt?,22~% and 2”7 correspond to forbidden words of length

10, 12 and 14, respectively. From this one can construct the words in table 1. The part of
the symbol plane that is shown corresponds to the lower right corner of the Fois@etion.

The primary pruning region extends (0, 0.375) to the left, to(0, 0.75) to the right and up to

(0.5, 0.5) to the top.

to the singularity. The limiting cases of these types of orbits generate the pruning fronts
[8, 35] between allowed and forbidden sequences, see figure 10.

We think that this pruning front fulfills the conjecture stated in [8] that the region
enclosed by the front and th&axis specifies the primary pruned region in the symbol
plane. There are no orbits with a symbol sequence lying in this primary pruned region and
all the other forbidden cells visible in figure 9 are related via the symmetry operations or they
are images or preimages of these regions. We cannot prove that the pruning front separates
allowed and forbidden orbits in the symbol plane, but we have found no counterexample.

The two pruning fronts are obtained from the two possible limiting mBpsand Py
applied toI". The plan is to start witl§ € I' and to use eitheP; or P, to map across the
discontinuity. The corresponding symbols can be read from figures 2 and 3; if we start, for
example, close to lin&6 shown in figure 3, the current symbolAsand the application of
Py carries us intoB. In the case ot’ € ST we assignA, and foré’ € S~ we assignB.

After this crucial step all further forward images underare well defined, similarly the
preimages of € I'. Therefore an infinite symbolic past and future can be assigngdital
the corresponding point in the symbol plane is part of fher s-pruning front, depending
on the initial mapping step. From the two pruning fronts in figure 10 the left with0.5

is generated using, and will be called the-pruning front, and the right is obtained using
Py, and will be called thef-pruning front. In the division of° in figure 8 the non-existing
cell B5.AB* corresponds to a square below tfigoruning front. The forbidden cells above
I' (which occur first for a division ofP into 2'2 cells) correspond to squares below the
s-pruning front.

As a result of the above construction the two pruning fronts are related. Next we must
denote by, andé; the respective coordinates of the two pruning fronts for the samé/e
find thaté; = S—Z(SS. Moreover, thef-front (and the pruned region it encloses) is invariant
underX;, i.e. invariant under the ma@, y) — (y/2+ % 26 —1). These symmetries in the
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Table 1. Pruned words in the cardioid billiard up to length 14. The words shavwn and

additionally w.o, 6.& and @.o are forbidden. Code words which are already pruned by
shorter words are omitted. Notice that, for example, the squBPes A® and B°A.A%B of
length 12 shown in figure 10 rule out all words of the foBRA.AS of length 11.

Word length Pruned words

10 A*B.AS

11 B%A.AS ASB.A*B

12 A®B.ASBA? ABA®B.A®

13 AB*A.A7 BAB*A.A® B2A3B.A7 AB2A3B.A®

A2BASB.A°B  B°A.A*BA?2  BSA.A3BA?  BA*B.A*BA?
ABA*B.A*BA  ASB.ASBAB A®B.ASBBA
14 A3BA2B.A7

fronts induce relations between the pruned words listed in table 1. In figure 10 the pruning
front is shown together with squares of lengt?22-6 and 2-7. From this one can obtain
finite approximations of the infinite grammar of the symbolic dynamics. The pruned words
of length 1Q..., 14 are given in table 1.

In figure 9 the density of points is much higher when close to fReruning front,
while it is low when close to the-pruning front (this is similar to the three-disk billiard
[35]). The reason is that the mapping from the Poiécaection to the symbol plane is
not area preserving, for example, the small cells just ado\ahown in figure 8 and the
much larger ones below are represented in the symbol plane by squares of the same size.
Considering a generic trajectory which fills the Poirgcaection uniformly, there is only a
low probability in the symbol plane for squares whose corresponding cell in the Peaincar
section is small.

4. Periodic orbits

Primitive periodic orbits of period: (i.e. fixed points of P", P"¢ = &) correspond to
periodic sequence® obtained from a finite wordv with n letters, where the period of

@ cannot be shortened. Two wordsand o’ belong to the same cyclic class if they can

be obtained from each other by a cyclic permutation. For a periodic symbol sequence
w = w1 ...w,, the corresponding point in the symbol pla@ey) given by equations (24)
becomes a geometric series and we obtain

N(w) 1 &

= = 27 26

T | 1—2—n;w (26)
N (o) 1 & »

5 = = 12 27
n_1 1_2,,[;@ +n+1 (27)

whereN(w) = Y7, ;2" is the binary interpretation ab.

The classical properties length, stability and Morse index of periodic orbits belonging
to different cyclic classes, which are related By 7 or XT, are identical. Therefore,
different cyclic classes will be combined into symmetry classes if their code words can
be transformed into each other by reflection and/or time-reversal. As symmetry classes
we defineCyy, Crx, Cx, Ct, and Cpo Using the operations defined in equation (25) (see
[27,37] for a similar classification in the case of the hyperbola billiard). Within every
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(d) o)

(8) (h)

Figure 11. Examples of periodic orbits:a) @ = AABABBAB € ijﬁ, (b) @ = AAABBB €
Clii ()@ = AAABAABBBABB € C1x, (d) @ = AABABB € Ct, (€)@ = AABAB € Cy,
(f) @ = AAAABAAB € Cy, (§) @ = AAAAABAB € C} and ) @ = AAABABB € Cno.

symmetry class we choose the sequences with the smallest binary interpratétipas a
representative for that class. To every symmetry class a multiplicity is associated, which
counts the number of different cyclic classes contained in it. &@rthe multiplicity is 4,
Ct, Cx and Ctx have multiplicity 2 andCyy has multiplicity 1. See figure 11 for some
examples.

In the case of no symmetry, < and” give the symmetric partners. t e Cr or
@ € Cx the corresponding symmetric partners are generated by < respectively. For

@ € Crx one obtains the symmetric partner byor <, since in this case = o. Thus,
despite the fact that the orbit shown in figure d)Liooks X-symmetric, application o
yields the corresponding time-reversed orbit.

The classe€x andCyy can be subdivided with respect to the symmetry lines (see [33]
for a similar discussion). We use the symbels| and L as an upper index to the class
to indicate the geometric form of the orbit resulting from an intersection of the symmetry
lines x>, X and7. For example, subclass,” c Cx contains orbits with period2— 1,
that have one perpendicular intersection with ihaxis and one point witlp = 0. The
remaining subclasses @lx are Cy and C);, both with orbits of periods/2 The orbits
with full symmetry can be divided int@;;;- and C{y; with orbits of period 4 and 4: + 2,
respectively. The symbal indicates that the corresponding orbit has two perpendicular
reflections at the boundary and jter > part is traversed in both directions. Orbits with
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Table 2. Number of cyclic classes, symmetry classes and the number of elements in the

corresponding symmetry classes foe= 2

..... 15 in the case of a complete binary symbolic

dynamics. The numberg, of pruned orbits in the cardioid billiard is indicated byn in the

corresponding classes.

Cyclic Symmetry Chul x
n  classes classes  Cly Ciit  Crx Cr ch cy! g Cno
2 1 1 1 — — — — — —
3 2 1 - — — — 1 — —
4 3 2 — 1 — 1 — — —
5 6-2 3-1 S — 31 - —
6 9-2 5-1 1 — — 1 -1 — 1 —
7 18-2 8-1 S — - - — -1 — 1
8 30-2 14-1 — 2 — 2 6-1  — 2 2
9 56— 21-2 - — - - — 142 — 7
10 99-6 39-3 3 — — 6 12-2 — 6-1 12
11 186-12 626 — — — — 31-6 — 31
12 335-33 112-13 — —1 1 12-1 274 — 12-3 57-4
13 630-76 189-25 — — — — 63-12 — 126-13
14 1161-145  352-46 -1 — 1 28-2 56-10 — 28-4  232-29
15  2182-314 607-89 — — — — 123-21  — 484-68

or TX or full symmetry are only possible for even since” exchanges the numbers af

and B. If n is odd, only orbits fromC)'(> and Cy, exist. Elements fronCp, only exist for
n>T.

In table 2 the number of cyclic classes, symmetry classes and the corresponding number

of elements in the different symmetry classes are showmfer2, ..., 15 in the case of

a complete binary symbolic dynamics. For period 1 there are two periodic sequénces
and B, which correspond to the lines. in our system. The shortest hyperbolic periodic
orbit has period 2 and the sequend®. Due to pruning not every orbit is allowed. In
table 2 the number of pruned symmetry classes are indicateesbyjor the corresponding
symmetry classes. Starting at period 5 the orbifs8 are pruned forj > 4. All other
periodic code words up to period 9 correspond to physical orbits. Starting with period 9
the orbitsA/BA3B, j > 4 are missing, and for period 10, in additian®BAAB. Three
examples of forbidden orbits are shown in figure 12.

Some of the forbidden orbits are obviously ruled out by the pruned symbols given in
table 1. For example, the pruned ward B.A° rules out the existence of all the periodic

(a)

(b)

(¢)

Figure 12. Examples of pruned periodic orbitsa)( f-pruning: A5B, (b) s-pruning: A®B% and

(c) combined pruning:A”BA4B4. Note that in ¢) the reflection in the singularity takes place
only from above.
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orbits of the formA/ B, for j > 5 but not forj = 4. The existence of orbits cannot be
deduced from the pruned words (of finite length), but only the non-existence of periodic
orbits. The reason is that a periodic orbit is an infinite sequence, which might be pruned
by an extremely long word which is much longer than the period. This is well illustrated
in the case of the periodic orbit*B, which is forbidden by the wordd BA*B.A*BA or
BA*B.A*BA? of length 13, see figure 10 and table 1.

The orbit A5B shown in figure 124) is an example of arf-pruned orbit. In fact, the
corresponding point in the symbol plane is inside the pruned sqifaBeA®, see figure 10.
As an example fos-pruning in figure 12¢) the forbidden orhitA® B¢ is shown, which is
pruned by the word3®4.A5%, whose square is below thepruning front. In addition there
are also orbits for which combinations of both pruning mechanisms occur, see figaye 12(

Long orbits, especially the-pruning, are the reason for some numerical difficulties in
deciding whether an orbit has a reflection next to the cusp or whether it is pruned. Some
periodic orbits close to the cusp have quite large eigenvalues, due to the fact, that the
curvature diverges near the cusp. For example, for period 11 the most unstable orbit has
eigenvalue 663 393 and the eigenvalue for the most unstable orbit of period 15 is even larger
than 1 000000. Note that such large instabilities cannot be calculated accurately using the
monodromy matrix of the map because of rounding-off errors; therefore we use the method
described in [30].

4.1. Desymmetrized cardioid billiard

The code word in the desymmetrized system can be easily read from the code word in the
full system in the following way: if two adjacent symbols are identical, assign 0, otherwise
1. For example the code fofAAB in the desymmetrized systems(811. Periodic orbits

of the full system with full orT X symmetry are reduced in length by a factor of 2. For
exampleAAABBB e Cyy maps t0001001= 001, orAAABAABBBABB < Ctx in the
desymmetrized system is given 69110100110% 001101.

Likewise the code word in the full system is constructed from the one in the
desymmetrized system. If the code word in the desymmetrized system has an odd number
of 1's, the period is doubled because otherwise it would not give a periodic word. These
orbits are just the ones witfis,; or Ctx symmetry in the full system.

The multiplicities of orbits in the desymmetrized system can be determined from the
symmetry of the corresponding orbit in the full system: for an orbit fi@g the multiplicity
is still 1; in the case ofx andCt the multiplicity reduces from 2 to 1. Orbits frorx and
Cho are almost indistiguishable in the desymmetrized system, they both have multiplicity 2.
For the relation between the code lengtlin the full andn’ in the desymmetrized system
and the corresponding multiplicities andm’ the rule 7™ = 2 holds. Ifn/n" = 2 then
also the geometric length and the stability exponent (which is the natural logarithm of the
larger eigenvalue of the monodromy matfik) are divided by 2.

The sign of the trace oM changes with every reflection at theaxis. The total
number of reflections at the-axis is equal to the number of 1's in the code word of the
desymmetrized system. To understand this fact it is helpful to interpret the symbols 0 and
1 in the reduced system.

In the reduced Poincarsection P the symbol 0 corresponds to all poings with
|p| > s/4, and 1 corresponds to all points witp| < s/4 (again excludingS and F).
Notice that the region corresponding to 0 is not simply connected. In configuration space
this translates to the rule illustrated in figure 13. Eog 4/+/3 all orbits from the sector
1 immediately reflect at the-axis. Fors > 4/+/3 only part of these orbits hits theaxis.
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Figure 13. The rule for the symbols 0 and 1 in the desymmetrized billiard in configuration
space: Connect the cusp with the current point on the boundary. Then reflect this line at the
normal vector in the current point. If the actual velocity vector is in the sector formed by these
two lines assign the symbol 1, otherwise 0.

The other part with negative encounters a reflection with the boundai® which gets it
closer tos = 0. All the remaining reflections of this part get the symbol 0, i.e. they must
eventually approack = 0 and hit thex-axis before the next symbol 1 can occur.

The fact that the number; &), of 1's in the code word gives the number of reflections
with the x-axis is important for calculating the Morse index which enters into the Gutzwiller
trace formula. For a billiard system the Morse indeis twice the number of reflections at
the boundary with Dirichlet boundary condition plus the maximal numbef conjugate
points [38]. For the desymmetrized cardioid billiard in the case of Dirichlet boundary
conditionsv = 2n + n + 2# (w) and in the case of Neumann boundary conditions on the
x-axisv = 2n + n. Alternatively the additional phase due te(#) can be interpreted as
coming from a group character of the underlying symmetry group. This point of view is
more appropriate when dealing with more complicated group symmetries (see e.g. [39]).

The relation between the code for the desymmetrized billiard and the symmetry classes
is obtained using the symmetry lines. Therefore, we first consider the relation between a
symbol string and the symmetry linek;, Xl' and 7y in the desymmetrized system [33].
The line Xé corresponds to all points i, whose symbol sequence is symmetric with
respect to the dot

X}~ (8.B). (28)

The line AT corresponds to all points i®, whose symbol sequence is symmetric with
respect to O

X5~ {B.OB). (29)

The line 7 corresponds to all points i?, whose symbol sequence is symmetric with
respectto 1

To ~ {B.1B). (30)

Iterating the basic symmetry line¥k;, Xl' or 7y shifts the point of symmetry to the left or
right. Combinations of these symmetries yield the structure of the code words of periodic
orbits in the symmetry classes shown in table 3.

Now the structure of the code words for a given symmetry in the full system can be
determined from the structure of the code words for the desymmetrized system. The result
is summarized in table 4. Notice that if one constructs code words with arbitrafythe
form given forCx, Ctx or Cr, it is possible to obtain a code word with higher symmetry.
Furthermore, it is possible to obtain a code word which is not primitive. The only symmetry
class which is not incorporated into the above scheme using the symmetry lines are orbits
from Ctx. The reason is that their code in the desymmetrized system does not have any
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Table 3. Form of the code words for periodic orbits in the desymmetrized system.

\ > L

| ﬂz 085 188
> 088 0808 1808
188 1808  1p1P

Table 4. Form of the code words for symmetric periodic orbits of the full cardioid billiard.
and Z stand for an arbitrary single lettex, for an arbitrary word.

|L Il |
Cra Cfﬁ Cr Cx C; C>><>

D <~ <« <« <«
aYo oo YaZo aY o ao

S P
aaao aY o

of the symmetries, such as orbits fro@h,. The only difference between them is that
orbits fromC,,, have an even number of 1's, whereas orbits flGm have an odd number

of 1's in the desymmetrized code. Thus, for a given code length orbits &gmin the
desymmetrized system occur much more often than their number in table 2 for the full
billiard might suggest. Actually, in the reduced system orbits fréf are even more
frequent than those fror@,.

4.2. Families of short periodic orbits

We call a periodic orbit a short orbit if the ratio of the geometric length to the number of
reflections is small compared with the average value of this ratio for the given period. Of

(a) (b) (¢)

(d) (e)

Figure 14. Examples of members of some families of short periodic orl@}sA"BB = G,
forn = 11, ) A”BBB for n = 11, (c) A"BABB forn = 11, d) A"BAB™AB = G, F,, for
n=m=11, € A"BABAB"AB forn=7,m =6, (f) AB2ATBABSAB = GoG7Fs.
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special interest for the application of Gutzwiller's periodic orbit theory [7] are families of
short periodic orbits where this ratio approaches zero, i.e. the orbits accumulate in length.
The code words of the simplest type of families have the ferm, with » starting and
ending inB. One family corresponds to fixed and varyingn. Some examples are shown

in figure 14. The family of orbitsA” BB yields the shortest accumulation lendth= 12.
Moreover, this is the only family of the form”» with finite , which exists for arbitrary

n. All the other families of short orbits of this kind are not accumulating but instead are
pruned for a finiten > nmax. This is easily seen using the representation of the families in
the symbol plane. The coordinates &fw in the symbol plane are

N(A"w) 1
= = N 31
V) 2n+m -1 2n+m -1 ((1)) ( )
N(A" @) o -
S = N 32
nt+m _ 1 on+m _ 1 (a)) ( )

and thus lim_ (8., ¥») = (8, 0) with § = 2*’"N(25). Furthermore, it turns out that all the
points (8, v,) lie on straight lines

yo = N s N (33)

N(w)
By shifting the code word or by considering a symmetric partner it is possible to obtain
8 €]0.375 0.75]. If different words fulfill this criterion the one with the smallest distance to
8 = 0.5 is chosen. In figure 15 some examples are shown together with the pruning front.
From the figure one can read the last allowed orbits as well as the pruning mechanism. If
8 €]0.375 0.5[ the family iss-pruned, whereas fat €]0.5, 0.75[ the family is f-pruned.
Applying a similar rule to the three symmetric images of the fundamental pruning region,
shows that it can occur that a family is pruned by both mechanisms.

We observe that the pruning front is a monotonously increasing curve in the interval
[0.375 0.5], and monotonously decreasing forg00.75]. Moreover, it only reaches 0 at
0.375 and 075. Therefore, families ofny kind can only exist if at least one of their limit
points in the symbol plane i€©.75, 0). In particular the familyA” BB exists for anyn.

One can construct a variety of more complicated families, e.g. with the structure
ArqAmB or A"aB™B, see figure 14. The special cad8 BAB"AB, see figure 14),

0.2 T v
Y
0.15 AAB E
\ 4
I
01 / \ ]
ABAA + / \ /’,‘;‘38
0.05 ; / \g E
sa i/ A N\
A®B4A | ¥ 5
P/ / . A’BAAB
A%B*A L # Ny
" P
o et £ e
0.4 0.45 0.5 055 8 0.6

Figure 15. Sequence of point&s,, y,) in the symbol plane of some families of short orbits
Ao that are pruned together with the pruning front. The labels denote the corresponding shifted
code word of the first plotted member.
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has the accumulating length= 24 and exists for any, because the corresponding limit
point in the symbol plane i$0.75, 0). Actually we think that there is an infinite number

of accumulating families. They can be constructed by introducing two combined symbols
F, = AB"A andG,, = BA™B. Now any sequence of},’s andG,,’s gives an accumulating
family, as long as all the indices collectively go to infinity. One example with diffesgnt

is shown in figure 14(). The length of the limit orbit of such a family is given by the total
number of the symbol¢,, and G,, multiplied by 12.

The instability of periodic orbits from accumulating families grows with increasing
period, because they must come arbitrarily close to the cusp. However, their instability
grows much slower than for generic orbits because they also get arbitrary close to the
parabolic linesF.

The pruning in the families of short orbits is related to the limiting orbit which almost
hits the cusp. It consists of a sliding motion and of a finite orbit hitting the cusp as illustrated
in figure 14. We now turn to the study of these finite orbits.

4.3. Finite orbits

In the quantum mechanical billiard problem discontinuities of derivatives of the billiard
map can play an important role (see, e.g. [40-42] and [25, 43-46] and references therein).
In the case of the cardioid billiard the singularity leads to the existence cusp orbits, which
we consider as finite orbits.

They start at an arbitrary angle in the cusp and eventually return to the cusp with an
arbitrary angle without the need to fulfill any reflection condition in the cusp. We think
that the investigation of orbits having a reflection in the cusp is already important from the
classical point of view: on one hand due to the connection to short periodic orbits and on
the other hand because cusp orbits are also extrema of the Lagrangian, as it is the case for
periodic orbits. This can be seen in the following way: the variation of the Lagrangian
L = L(¢,...,¢,) Yields a system ofi-coupled nonlinear equatio’éL = 0. A short
calculation shows that ip; = +x the corresponding equation

L _ ol(pi—1, ¢i) n ol(i, ¢it1)
84)1' $i==m 8¢l 8¢l ¢i=xm

is fulfilled regardless of the values ¢f_; and¢,;,;. This means that there is no reflection
condition to fulfill in the point¢; = +x. Thus, in some sense the singularity looks like an
infinitely small circle, i.e. it can reflect into any direction. Notice that the above argument
does not hold if we look af as a function of;. This dependency of the Lagrangian on the
choice of coordinates is due to the singularity. We will not consider cusp orbits as periodic
orbits, but instead as finite orbits with the same initial and final point in configuration space.
Numerically these orbits can either be found by a one-dimensional search in the Boincar
map or by finding the stationary points the Lagrangian with fixed initial and final point.

In order to classify the cusp orbits we extend the symbolic dynamics with a third letter,
C, which corresponds to the lingsandI". For a cusp orbit starting if, the next point lies
onT'~1, from which one iterates until the image point first liesonSince the momentum
is not defined in the next step we consider cusp orbits as finite orbits whose code word is
CaC, wheree is a code word consisting of and B. One could omit the’s, but we find
it more convenient to have the number of letters in a code word correspond to the number
of reflections. Thus, the shortest cusp orbit, which runs along the symmetry line has the
codeCC, because it starts i§ and has its next and last point &h) see figure 1&).

Since the partition of the Poindassection as shown in figures 6 and 7 is given by the

=0 (34)
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(a) (b) (¢)

(d) (e) D)

(&) (h) (i)

Figure 16. Examples of finite orbitsa) CC, (b) CAC, (c) CAAC, (d) CABC, (e) CAAAC,
(f) CAABC, (g) CABAC, (h) CAAAAC and () CAABAC.

iterates ofl", cusp orbits correspond to the intersections of these lines. Actually it is simplest
just to iteratel’ % and to look for intersections with. After » iterations we have?! —1
intersections (ignoring pruning), i.e. at every iteration there &reekv intersections, which
is exactly the number of cusp orbits one expects without pruning. Deflfimigt = P"T" 1,
the number of reflections of a cusp orbit which is given by the intersectidn6f! and
I,isn+ 2.

Similar to the case of periodic orbits, finite orbits can be classified according to their
symmetry using the symmetry lines. Intersection§gandl" =" correspond td"-symmetric
cusp orbits which have periodn2because the distance 1 and ' is n — 1 forward
respectively backward iterations. IntersectionsXgf and I'™" yield X-symmetric cusp
orbits. In the same way cusp orbits wify symmetry are found. Starting on a symmetry
line, past and future are symmetric and thus the symmetry is reproduced in the cusp;i.e. a
symmetric orbit retraces itself also in the cusp and-aymmetric orbit has & -symmetric
reflection in the cusp. The exceptional period 2 cusp atlgit has full symmetry. This is
not the case for any other cusp orbit.

By counting the number of intersections of the symmetry lines and iteratégighoring
pruning) we find that there aré”22/2 symmetric cusp orbits of even periadand 2"~%/2
for odd n. Like in the case of periodic orbits the non-symmetric cusp orbits are the
overwhelming majority for larg@. For a complete symbolic dynamics the number of cusp
orbits is exactly 2-2, wheren is the total length of the word'«C. So already this number
grows faster than the number of periodic orbits because we do not have to consider cyclic
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classes here, as has been observed in [25]. Furthermore, cusp orbits can be combined to
give multiple cusp orbits. Their number can be estimated using the topological polynomial
[47] for the symbolic dynamics with lettersA, B, CC}, which is 1— 2z — z2 = 0, such

that we obtainie, = —In(z) = In(1 + V/2) for the topological entropy. Therefore finite
orbits occur much more often than the periodic orbits for which/tge= In 2 in the case

of a complete symbolic dynamics.

We will now briefly describe the relation between cusp orbits and the families of
accumulating orbits. The familie$”w performn successive reflections along the boundary,
which are followed by some other reflections after which the orbit returns to the approximate
sliding motion. For large: this family tends to the sliding motion plus a limiting cusp orbit.

If A”BaB is the code word for the family, the corresponding cusp orbit is give@®y .
The largest anglg between thec-axis and the limiting cusp orbit determines the maximum
number of consecutive reflections having the same letter. Only ferO can a family exist
for any n, otherwise we have a finite family of short orbits which do not accumulate.

5. Global properties of the billiard

In this section some global characteristics of the cardioid billiard are calculated. In the first
part we obtain an analytical result for the average distance between reflectous an
analytical estimate for the KS entrofiixs. The same quantities are then calculated using
averages over periodic orbits, where each orbit is weighted by its stability.

We first calculate dynamical averages by iterating the billiard map. Averaging over
several generic trajectories fors510° iterations we obtain for the average length between
reflections/ and the Lyapunov exponent, which in our case equals the KS enkigpy

[~ 1.851 hks ~ 0.653 (35)

hks is calculated according to [48], however, we use the linearized map (8). We can also
calculate these quantities analytically as we will now show.

For any billiard in the domaif2 the average length is determined by the gfpand
circumferencgd2| [48] by transforming the average over the length function p) on P
(36) into the volume of the energy shell (37)

_ 1
l=/l(s,p)du:7/l(s,p)dsdp (36)
P 210 Jp
1 || . -
= — dxdyd = —— i.e. for the cardioid 37
2009 Joxs 0] (37)
I=37%=185055.. (38)
where i = ﬁ ds dp is the normalized Liouville measure da becausdP| = 20L2|.

The numerical average in (35) is in good agreement with this result.
An analytical expression for a lower bound bgs was given by Wojtkowski in [16]:

s > / logo du (39)
P

whereg is the matrix norm (11). Since contains the length(s, p), which is given by the
root of a cubic equation we again pass to the generating function of thé (#aj,). The
variables are transformed by

$(¢1, ¢2) = 4sin(¢1/2) (40)

<L(¢17 ¢2), 1 (d’l))
p(p1, 2) = (v, T1) = . 41
( 1 2) (U 1) l( . 2) ( )
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Sinces is independent of, we obtain for the Jacobian of the transformation

B(S, P) _ ’ <L3T)(LaL/>
m - 2C0$¢1/2) ((L s T) - lz) /1

where a prime denotes the derivative with respeei;toSince not all combination&, ¢,)
correspond to allowed trajectories, we have to restrict the integration ranges. Moreover, we
use the symmetry of the system to restrict the integration to posptivend obtain

a(s, p)
hks = I , det———" d¢, do;. 43
KS I3Q|/ /JT+¢1 0go(¢1, ¢2) de (1. 62) 2 depy (43)

det (42)

From (8) we obtairud = (ky —1)(k, — 1) wherek; = lk; /n;. Therefore we have to evaluate
the following integral
a(s, p)

s > / [ oo (Vi =Dk 1)+ ik~ k) det P

The numerical evaluation of this integral givegs > 0.633. Even though Wojtkowski's
theorem only gives a lower bound @Rs this value is surprisingly close to the numerically
measured value (35).

hks can also be approximated by calculating the entropy of the partition of the P@incar
sectionP into cells labelled by words of lengtt

dopo dpy. (44)

1
hks(n) = — Z Poln p, (45)

where p, = w(w) is the size of the cell with labeb (see, e.g. [49]). Since the cell
sizes inP are quite hard to obtain we determine them numerically in the symbol plane.
This is done by calculating the probability with which each cell is visited by performing
many iterations of one initial condition. Thus, we numerically approximate the invariant
measure in the symbol plane by assigning a probability, to every cell labelled by a
word, w, of lengthn. The sum (45) extends over all allowed cells in the symbol plane. An
estimate for the topological entropy with respect to the code length is obtained by setting
p = 1/N(n), where the total number of allowed cells labelled by words of lengtl
denoted byN(n) =" 1:

1 1
hiop(n) = = Zp Inp = . InN(n). (46)

Forn = 22 we obtainiks ~ 0.66 andhp ~ In(1.98) ~ 0.68. hks is smaller tharigp,

the difference tells us how much the invariant measure on the symbol plane deviates from
equipartition. The three values faks are in the expected order@3 < 0.65 < 0.66: the
analytical value is a lower bound and the value obtained from the symbol plane tends to
overestimate due to finite size effects.

5.1. Global properties from periodic orbits

Now we repeat the calculation @iks, hwop and/ using periodic orbits. The main point
in the calculation of these averages is that the sum in (45) can be transformed into a sum
over periodic orbits of fixed length. Each cell visited by a periodic opbis assigned a
probability given by the inverse of the eigenvalue$re from which the invariant measure
is approximated (see, e.g. [47,50, 51]).

This approach can be illustrated by a plot of the distribution of periodic orbits in the
Poincaé section (see figure 17). We observe that the distribution is not as uniform as
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Figure 17. Plot of the points of all periodic orbits with code length up/to= 15 in the
Poincaé sectionP. The symmetry lines and the images/preimage$ afre visible, compare
with figure 4.

one might expect. Most obvious we have regions with very few periodic orbits in the
neighbourhood ofF, because these orbits are rather stable. The same structure can be
observed in the division oP into cells in figure 7. In a region where the cells are small
there is a high density in contrast to regions with large cells, where the density is low.
As we already discussed, the accumulating families are not only clagehtot also close
to S and therefore close td' and its images and preimages. These families evade the
region surrounding” exactly at the points, where there exists a corresponding cusp orbit.
In the neighbourhood of parts &f arounds ~ 2.5 have a high density of periodic orbits.
These orbits come close 1o without having been close t#, and are therefore extremely
unstable, which is in accordance with their high density. Moreover, some of the basic
symmetry lines and their iterates are visible. The reason for a relatively high density of
points along the symmetry lines is the fact that they are one-dimensional. Thus, the small
fraction of symmetric orbits has to fill only a ‘small’ set 1, whereas the large number of
orbits without symmetry has to fill large areas? Plotting only orbits of a higher period
makes the symmetry lines less visible. In the symbol plane the periodic orbits are much
more uniformly distributed, see figure 18.

The weighted average over periodic orbits of lengibf a quantity f («, /) is now given

by
_ >, [y, L)e™
Zy e iy

where the sum runs over all periodic orbjtof code lengths, including multiple traversals.
Although for largen we do haveZy e ~ 1 [52] we include this term for normalization.

Using the periodic orbits up to code length 20 we calculated the mean stability exponent
per reflection(u)?/n, i.e. the Ljapunov exponent. The values approach a constant from
above for increasing with (u)3,/20 = 0.657, which agrees quite well with the value of
hks in (35).

()n (47)
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Figure 18. Plot of the points of all periodic orbits up to code
lengthn = 15 in the symbol plane; compare with figure 17
where the corresponding points are presented in the Péincar
section.

For the average distance between consecutive reflections we ¢btgjf?0 = 1.864,
where the values are slowly decreasing for increasinguch that we have good agreement
with the analytical result (38). The conversion of averages measured with respect to the
discrete time Poincérmap and the one measured in phase space is just given by the factor
(38). Thus the corresponding quantities for continuous time are given by

hks(20)/1 = 0.36 2 {u)so/l = 0.36. (48)

Of coursehks/! can also be approximated by averaging which gives(u/1)5, = 0.363.

For the family of billiards (1) Robnik calculated the KS entropy in [20]. He gave values for
e close to 1, from which we extrapolates/! =~ 0.34 for the cardioid, which is consistent
with our values.

Finally, we calculate the topological entropy,, from the growth of the number of
periodic orbits by consideringp(n) = %In N(n), where N(n) is the total number of
points belonging to all the periodic orbits of periad including multiple traversals. We
obtain a plateau forn > 10 with i ~ 0.683% In 1.98, which is in good agreement with
the value obtained in the symbol plane.

5.2. Statistical properties of periodic orbits

The following investigations are based on periodic orbits up to code length 20 (see, e.g.
[27,37,53-55] for similar studies for other systems). The principle difference of the
averages()’ taken in this section to the averagé¥ calculated in the previous section

is that now all periodic orbits are equally weighted, i.e. we have a uniform weight in the
symbol plane. Thus, we transfer the picture of periodic orbits in the Pd@nsaction
(figure 17) into the symbol plane (figure 18) and avergde, /) over periodic orbits of

code lengthn by

. 1
1= No ;fwy,zy). (49)
Looking at figure 18 we first observe that in fact the orbits are distributed rather uniformly
in the non-pruned region. The symmetry lines are almost invisible. Only the accumulating
families give rise to holes that are not related to the pruning front.

In the previous section we calculatég, in order to characterize the growth in the
number of periodic orbits with the period. Here we study the growth behaviour of the
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number\/ (/) of periodic orbitsy with geometric lengtfi, below a given lengtlh. Because
the cardioid billiard is strongly chaotic one expects the typical exponential proliferation

Tl

N~ (50)
7l

wherer is the topological entropy with respect to the geometric length of orbits. However,
this classical staircas@/(I) is not well defined in our case because of the families
accumulating in length (the same happens, e.g. in the case of the stadium billiard or the
wedge billiard [54]).

Therefore we defin& ¢ as the set of all periodic orbits,, whose corresponding code
has more than five consecutive lettetsor B, and Eq as the set of periodic orbits with
up to five consecutived or B. This choice is somewhat arbitrary, but motivated by the
observation that orbits fronZ,.. already have the geometrical structure which is typical
for the limit orbit of the considered family. We definéq(/) as the counting function of
the number of orbits fronE ey with geometric length less thah In figure 19N (/) and
Meg(l) are shown in logarithmic representation using the periodic orbits up to code length
20 together with a fit of the asymptotic behaviour (50) with~ 0.345. N (/) shows the
strong increase next to= 12, which is caused by the famil* BB. This step would even
be more pronounced, if orbits of higher period had been used. In contrast the logarithmic
plot of MVeg(!) is a much ‘smoother’ curve, with most of these ‘steps’ removed.

In order to verify that the above splitting selects the accumulating families we plot the
distribution p, (/) of lengths for a given code length. In figure a8p(where all orbits with
code length 14 were used, long tails dowri te 10 are visible. In contrast in figure 28)(
only orbits from E..g were used, and the outliers are removed.

We calculated the average length of periodic orbits and observed the expected linear
increase of the mean length¢ = nl with the code length, with / = 1.99 using all orbits
and/ = 2.054 using orbits fronErg The variance of the distribution is also linearsin
For orbits from Ereg we find thato? ~ 62n for n > 15, with 62 ~ 0.47. Furthermore,
we observed, as in the case of the hyperbola billiard [27], tha&t) are approximately
Gaussian distributed. This is demonstrated in figuredp®¢here eachp, () is shifted to
the origin and the variance is normalized.

N Npeg®
10000 | 10000 |
1000 ¢ 1000 ©
100 100 +
10 10 |
1 - ; ' 1 - .
4] 10 20 30 1 40 0 10 20 30 1 40

Figure 19. In (a) the logarithmic representation of the number of periodic orbits with geometric
length less that is shown using all orbits up to code length= 20. In () Meg(!) is shown in
logarithmic representation where all orbits with more than five consecdtioeB are excluded,;
also shown is% for © = 0.345.
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Figure 20. Probability distributionp, ({) for n = 14: (a) all orbits are included,h) only orbits
with not more than five consecutivé or B are used, and incf the difference between both
is shown. In addition ing) and p) a Gaussian distribution is shown by the broken curve. In
(d) the shifted and normalized distributiopg(/) are shown forn = 14, ..., 20 using the orbits
from Ereg.

In [27] a relation between the number of cyclic classes of code words and the classical
staircase\V(/) was derived under the assumption tpat/) has a Gaussian distribution and
that the mean lengtk)? and the variance;?> depend linearly om. The result adopted to

our case is
1 /. f . h 2
o P /1= 25212

whereh, denotes the topological entropy with respect to code words. In the case of orbits
from By We obtaini,, = 0.672 and therefore ~ 0.34, which is in good agreement with

the valuer ~ 0.35 obtained from the fit alVieg(/) with the asymptotic behaviour. We take
the consistency of these results as a justification of the above splitting.

We also considered the distribution of the stability exponantsor fixed code length
n and found that, is centred around a mean)? = nit with & = 0.70 using either all
orbits or only orbits fromEieg.

A further common statistic is the spacing between neighbouring lengths. In order to
obtain a mean spacing of one, the asymptotic behaviour (50) is used to unfold the length
spectrum. The result using orbits froBeg with length! < 30 is shown in figure 21 is in
agreement with the Poisson distributidr(s) = e™*.

It is also interesting to look at the dependence of the stability expomeniersus the
geometric length,. The result is shown in figure 22. Some of the families are clearly
visible as series of points with accumulatihgand thereby increasing, .
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Figure 21. Length spacing distributiorP (s) (full line) together with the Poisson distribution
e~ (broken curve).
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Figure 22. Plot of the stability exponents, versus the geometric length using all orbits up
to code length 20.

6. Summary

In this paper we have developed a symbolic dynamics for the cardioid billiard by
constructing a partition of the Poinéassection using two symbolsA and B. After
completion of the part on the symbolic dynamics a preprint appeared [25], where the
same coding was found independently and used to study diffraction effects of the quantum
mechanical system.

For the symbolic dynamics it turned out that not every sequence of symbols is allowed.
We obtained the two pieces of the pruning front, which are related to the two pruning
mechanisms in the system. Using the symbolic dynamics, periodic orbits can be labelled
in a unique way. Assisted by the knowledge that all orbits correspond to maxima of the
Lagrangian we calculated a large number of periodic orbits up to code length 20. Complete
sets of higher-periodic orbits are hard to obtain because some of them are extremely unstable
due to the unbounded curvature. Using the symmetry lines of the billiard map, we presented
a classification of periodic orbits with respect to their symmetry properties. This was first
obtained in the symmetry reduced symbolic dynamics and then translated back to the full
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system. Combining Wojtkowski’s result about convex scattering billiards with a geometric
argument in the symmetry reduced system we were able to determine the Morse indices
from the code words.

Studying families of periodic orbits with short geometric length provides a good
application of the pruning front, because it allowed us to determine whether a family exists
for arbitrary code length, or whether it is eventually pruned. In the latter case a plot of the
points of the periodic orbits in the symbol plane allows for the determination of the last
allowed member of the family. The converse argument enables us to write down an infinite
number of families that accumulate in length. Furthermore, it turned out that cusp orbits
appear rather natural even from a merely classical point of view as parts of the possible
limit orbits of the short families.

In the last section we calculated an estimate for the KS entropy and found good
agreement with numerically calculated values. Averaging the periodic orbits we find
consistent values for the KS entropy and the average length between reflections. We illustrate
the idea of the periodic orbit averaging by a plot of periodic orbits in the Pdneaction.

The topological entropy is quite close to In2 because the pruning sets in rather late.

To obtain well-defined statistics despite the presence of accumulating families we
suggested a method to subtract the accumulating families. This procedure might also
be helpful when using Gutzwiller's periodic orbit theory, where families of accumulating
periodic orbits have to be treated separately. We believe that this method might be useful
for other systems with accumulating families.

With the complete set of periodic orbits, knowledge of the Morse indices and an
understanding of accumulating families and cusp orbits all the elements for the periodic
orbit quantization of the cardioid billiard are available. Eventually the same program should
be carried out for Robnik’s family of billiards, at least close to the cardioid, where it can
be expected to have large chaotic areas in phase space. On one hand, the system then
lacks the singularity which makes it simpler on first sight. On the other hand we think
that it becomes more difficult, because there will be inverse hyperbolic orbits, such that it
is not sufficient to look for maxima of the Lagrangian in order to find periodic orbits and,
moreover, a binary symbolic dynamics will not suffice.
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